Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 5 | 1327--1333
Tytuł artykułu

Assessment of query execution performance using selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach

Warianty tytułu
Języki publikacji
The paper deals with the assessment of an experimental data modeling approach which is intended to support the agile oriented data modeling. The approach is based on the Anchor Data Modeling technique and is applied on a multidimensional data model. The assessed approach is expected to facilitate more effective execution of queries in the data mart environment. The emphasis is placed on the comparison of the query execution performance using database schemas, each built using traditional and the experimental approach. The tests are done in the environment of selected modern Business Intelligence tools, and using two test queries with varying output dataset sizes. The results show that the use of the database schema, created according to the experimental data modeling approach, had positive impact on the querying performance in several cases. The magnitude of impact on the querying performance, however, varied depending on each query's respective resulting dataset size.(original abstract)
Opis fizyczny
  • VŠB - Technical University of Ostrava,
  • R. Kimball a M. Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 3rd ed., New York: Wiley, 2013.
  • S. Liu, A. H. B. Duffy, R. I. Whitfield a I. M. Boyle, "Integration of decision support systems to improve decision support performance," Knowledge Information Systems, vol. 22, no. 3, pp. 261-286, 2010. DOI: 10.1007/s10115-009-0192-4.
  • W. H. DeLone a E. R. McLean, "Measuring Success: Applying the DeLone & McLean Information Systems Success Model," International Journal of Electronic Commerce, vol. 9, no. 1, pp. 31-47, 2004.
  • R. R. Nelson, P. A. Todd a B. H. Wixom, "Antecedents of Information and System Quality: An Empirical Examination Within the Context of Data Warehousing," Journal of Management Information Systems, vol. 21, no. 4, pp. 199-235, 2005. DOI: 10.1080/07421222.2005.11045823.
  • E. A. Rundensteiner, A. Koeller a X. Zhang, "Maintaining Data Warehouses over Changing Information Sources," Communications of the ACM, vol. 43, no. 6, pp. 57-62, 2000. DOI: 10.1145/336460.336475.
  • T. Torey, S. Lightstone, T. Nadeau a H. Jagadish, Database Modeling and Design: Logical Design, 5th ed., Burlington: Morgan Kaufmann, 2011.
  • S. Rizzi, "Conceptual Modeling Solutions for the Data Warehouse," In Data Warehouses and OLAP : Concepts, Architectures and Solutions, Hershey, IGI Global, 2007, pp. 1-26.
  • S. Ambler, Agile Database Techniques: Effective Strategies for the Agile Software Developer, New Jersey: Wiley, 2003.
  • L. Corr, Agile Data Warehouse Design, Leeds: DecisionOne Press, 2014.
  • R. Němec a F. Zapletal, "The Design of Multidimensional Data Model Using Principles of the Anchor Data Modeling: An Assessment of Experimental Approach Based on Query Execution Performance," WSEAS Transactions on Computers, vol. 13, pp. 177-194, 2014.
  • R. Němec a F. Zapletal, "Analysis of Query Execution Performance Factors in the Anchor Multidimensional Database Schema Environment," in Selected Paper of MEKON 2014 Conference, Ostrava, 2014, pp. 105-117.
  • R. Němec, "The Analysis of Historization Technique in Context of Handling Changes in Dimensions in Multidimensional Model and Anchor Data Modeling," in Proceedings of the 10th International Conference on Strategic Management and Its Support By Information Systems SMSIS 2013, Ostrava, 2013, pp. 135-146.
  • O. Regardt, L. Rönnbäck, M. Bergholtz, P. Johannesson a P. Wohed, "Anchor Modeling: An Agile Modeling Technique Using the Sixth Normal Form for Structurally and Temporally Evolving Data," in Conceptual Modeling - ER 2009 (Lecture Notes in Computer Science 5829), Rio Grande do Sul, 2009, pp. 234-250. DOI: 10.1007/978-3-642-04840-1_19.
  • C. J. Date, H. Darwen a N. A. Lorentzos, Temporal Data and the Relational Model: A Detailed Investigation into the Application of Interval and Relation Theory to the Problem of Temporal Database Management, Oxford: Elsevier LTD., 2003.
  • R. Němec, "The Comparison of Anchor and Star Schema from a Query Performance Perspective," in World Academy of Science, Engineering and Technology, issue 71, Paris, 2012, pp. 1718-1722.
  • R. L. Sallam, B. Hostmann, K. Schlegel, J. Tapadinhas, J. Parenteau and T. W. Oestreich, "Magic Quadrant for Business Intelligence and Analytics Platforms 2015," Gartner Research, 2015, 2015-02-23, URL: 2ACLP1P&ct=150220&st=sb.
  • E. Malinowski a E. Zimányi, "A conceptual solution for representing time in data warehouse dimensions," in Proceedings of the 3rd Asia-Pacific conference on Conceptual modelling, Darlinghurst, 2006, pp. 45-54. DOI: 10.1145/1151855.1151861.
  • F. Ravat, O. Teste a G. Zurfluh, "Towards Data Warehouse Design," in Proceedings of the eighth international conference on Information and knowledge management, Kansas City, 1999, pp. 359-366. DOI: 10.1145/319950.320028.
  • F. Di Tria, E. Lefons a F. Tangorra, "GrHyMM: A Graph-Oriented Hybrid Multidimensional Model," in Advances in Conceptual Modeling (ER 2011 Workshops, LNCS 6999), Brussels, 2011, pp. 86-97. DOI: 10.1007/978-3-642-24574-9_12.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.