PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 19 | nr 2 | 5--25
Tytuł artykułu

The Forecasting of Labour Force Participation and the Unemployment Rate in Poland and Turkey Using Fuzzy Time Series Methods

Autorzy
Warianty tytułu
Prognozowanie aktywności zawodowej i stopy bezrobocia w Polsce i Turcji przy użyciu metody rozmytych szeregów czasowych
Języki publikacji
EN
Abstrakty
Metody rozmytych szeregów czasowych oparte na teorii zbiorów rozmytych zaproponowanej przez Zadeh (1965) zostały użyte po raz pierwszy w badaniach Song i Chissom (1993). Od tego czasu przy wykorzystaniu metod rozmytych szeregów nie obowiązują założenia wymagane dla tradycyjnych szeregów czasowych. Szeregi rozmyte stanowią jednak skuteczne narzędzie prognozowania, a zainteresowanie nimi jest coraz większe. Stosowane są w niemal wszystkich dziedzinach naukowych, takich jak ochrona środowiska, finanse i ekonomia. Szczególne znaczenie w obszarze ekonomii i socjologii mają zjawiska aktywności zawodowej i bezrobocia. Z tego powodu istnieje wiele badań z zakresu ich prognozowania. W niniejszym artykule wykorzystano właśnie różne metody rozmytych szeregów czasowych dla sporządzenia prognozy aktywności zawodowej i stopy bezrobocia w Polsce i Turcji. (abstrakt oryginalny)
EN
Fuzzy time series methods based on the fuzzy set theory proposed by Zadeh (1965) was first introduced by Song and Chissom (1993). Since fuzzy time series methods do not have the assumptions that traditional time series do and have effective forecasting performance, the interest on fuzzy time series approaches is increasing rapidly. Fuzzy time series methods have been used in almost all areas, such as environmental science, economy and finance. The concepts of labour force participation and unemployment have great importance in terms of both the economy and sociology of countries. For this reason there are many studies on their forecasting. In this study, we aim to forecast the labour force participation and unemployment rate in Poland and Turkey using different fuzzy time series methods. (original abstract)
Rocznik
Tom
19
Numer
Strony
5--25
Opis fizyczny
Twórcy
autor
  • Ankara University, Ankara, Turkey
autor
  • Giresun University, Turkey
Bibliografia
  • Aladag C.H., Basaran M.A., Egrioglu E., Yolcu U. and Uslu V.R. (2009), Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations, ʻExpert Systems with Applicationsʼ, 36, 4228-4231.
  • Alpaslan F., Cagcag O., Aladag C.H., Yolcu U., and Egrioglu E. (2012), A novel seasonal fuzzy time series method, ʻHacettepe Journal of Mathematics and Statisticsʼ, 41(3), 375-385.
  • Bezdek J.C. (1981), Pattern recognition with fuzzy objective function algorithms, Plenum Press., New York.
  • Cagcag Yolcu O. (2013), A hybrid fuzzy time series approach based on fuzzy clustering and artificial neural network with single multiplicative neuron model, ʻMathematical Problems in Engineeringʼ, Vol. 2013, Article ID 560472, 9 pages.
  • Chen S.M. (1996), Forecasting enrollments based on fuzzy time-series, ʻFuzzy Sets and Systemsʼ, 81, 311-319.
  • Chen S.M. (2002), Forecasting enrollments based on high order fuzzy time series, ʻCybernetics and Systemsʼ 33, 1-16.
  • Chen S.M. and Chung N.Y. (2006), Forecasting enrolments using high order fuzzy time series and genetic algorithms, ʻInternational Journal of Intelligent Systemsʼ, 21, 485-501.
  • Chen S.M. and Chen C.D. (2011), TAIEX forecasting based on fuzzy time series and fuzzy variation groups, ʻIEEE Transactions on Fuzzy Systemsʼ, vol. 19 No.1.
  • Cheng C-H., Cheng G-W. and Wang J-W. (2008), Multi-attribute fuzzy time series method based on fuzzy clustering, ʻExpert Systems with Applicationsʼ, 34, 1235-1242.
  • Davari S., Zarandi M.H.F. and Turksen I.B. (2009), An Improved fuzzy time series forecasting model based on particle swarm intervalization, The 28th North American Fuzzy Information Processing Society Annual Conferences (NAFIPS 2009), Cincinnati, Ohio, USA, June 14-17.
  • Egrioglu E., Aladag C.H., Yolcu U., Uslu V.R. and Basaran M.A. (2009), A new approach based on artificial neural networks for high order multivariate fuzzy time series, ʻExpert Systems with Applicationsʼ, 36, 10589-10594.
  • Egrioglu E., Aladag C.H., Yolcu U., Basaran M.A. and Uslu V.R. (2009), A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model, ʻExpert Systems with Applicationsʼ, 36, 7424-7434.
  • Egrioglu E., Uslu V.R., Yolcu U., Basaran M.A. and Aladag C.H. (2009) A new approach based on artificial neural networks for high order bivariate fuzzy time series, IN: J. Mehnen et al. (Eds.): Applications of Soft Computing, AISC 58, Springer-Verlag Berlin Heidelberg, 265-273.
  • Egrioglu E., Aladag C.H., Yolcu U., Uslu V.R. and Basaran M.A. (2010), Finding an optimal interval length in high order fuzzy time series, ʻExpert Systems with Applicationsʼ 37, 5052-5055.
  • Egrioglu E., Aladag C.H., Basaran M.A., Uslu V.R. and Yolcu U. (2011), A new approach based on the optimization of the length of intervals in fuzzy time series, ʻJournal of Intelligent and Fuzzy Systemsʼ, 22, 15-19.
  • Hsu L-Y., Horng S-J., Kao T-W., Chen Y-H., Run R-S., Chen R-J., Lai J-L. and Kuo I-H. (2010), Temperature prediction and TAIFEX forecasting based on fuzzy relationships and MTPSO techniques, ʻExpert Systems with applicationsʼ, 37, 2756-2770.
  • Huarng K. (2001), Effective length of intervals to improve forecasting in fuzzy time-series, ʻFuzzy Sets and Systemsʼ, 123, 387-394.
  • Huarng K. and Yu T.H.-K. (2006), Ratio-based lengths of intervals to improve fuzzy time series forecasting, ʻIEEE Transactions on Systems, Man,, and Cybernetics-Part B: Cyberneticsʼ, 36, 328-340.
  • Huarng K. and Yu T.H.-K. (2006b), The application of neural networks to forecast fuzzy time series, ʻPhysica Aʼ, 363, 481-491.
  • Huarng K. and Yu T.H.-K. and Hsu Y.W. (2007), A multivariate heuristic model for fuzzy timeseries forecasting, ʻIEEE Trans. Syst., Man, Cybern. B, Cybernʼ, 37 (4), 836-846.
  • Jilani T.A. and Burney S.M.A. (2007), M-factor high order fuzzy time series forecasting for road accident data: Analysis and design of intelligent systems using soft computing techniques, ʻAdvances in Soft Computingʼ, 41, 246-254.
  • Jilani T.A. and Burney S.M.A. (2008), Multivariate stochastic fuzzy forecasting models, ʻExpert Systems with Applicationsʼ, 35(3), 691-700.
  • Jilani T.A., Burney S.M.A. and Ardil C. (2007), Multivariate high order fuzzy time series forecasting for car road accidents, ʻInternational Journal of Computational Intelligenceʼ, 4(1), 15-20.
  • Kuo I-H., Horng S-J., Kao T-W., Lin T.-L., Lee C.-L. and Pan Y. (2009), An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization, ʻExpert Systems with Applicationsʼ, 36, 6108-6117.
  • Kuo I-H., Horng S-J., Chen Y-H., Run R-S., Kao T-W., Chen R-J., Lai J-L. and Lin T-L. (2010), Forecasting TAIFEX based on fuzzy time series and particle swarm optimization, ʻExpert Systems with Applicationsʼ, 37, 1494-1502.
  • Lee L.W., Wang L.H., Chen S.M. and Leu Y.H. (2006), Handling forecasting problems based on two factor high-order fuzzy time series, ʻIEEE Trans. on Fuzzy Systemsʼ, 14 No:3, 468-477.
  • Lee L.W., Wang L.H. and Chen S.M. (2007), Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithms, ʻExpert Systems with Applicationsʼ, 33, 539-550.
  • Lee L.W., Wang L.H. and Chen S.M. (2008), Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques, ʻExpert Systems with Applicationsʼ, 34, 328-336.
  • Li S-T., Cheng Y-C. and Lin S-Y. (2008), A FCM-based deterministic forecasting model for fuzzy time series, ʻComputers and Mathematics with Applicationsʼ, 56, 3052-3063.
  • Park J-I., Lee D-J., Song C-K. and Chun M-G. (2010), TAIFEX and KOSPI 200 forecasting based on two factors high order fuzzy time series and particle swarm optimization, ʻExpert Systems with Applicationsʼ, 37, 959-967.
  • Song Q. and Chissom B.S. (1993), Fuzzy time series and its models, ʻFuzzy Sets and Systemsʼ, 54, 269-277.
  • Song Q. and Chissom B.S. (1993), Forecasting enrollments with fuzzy time series-Part I., ʻFuzzy Sets and Systemsʼ, 54, 1-10.
  • Song Q. and Chissom B.S. (1994), Forecasting enrollments with fuzzy time series-Part II., ʻFuzzy Sets and Systemsʼ, 62, 1-8.
  • Yolcu U., Egrioglu E., Uslu V.R., Basaran M.A. and Aladag C.H. (2009), A new approach for determining the length of intervals for fuzzy time series, ʻApplied Soft Computingʼ, 9, 647-651.
  • Yolcu U., Cagcag O., Aladag C.H., and Egrioglu E. (2014), An enhanced fuzzy time series forecasting method based on artificial bee, ʻJournal of Intelligent & Fuzzy Systemsʼ, 26 (6), 2627-2637.
  • Yu T.H-K. and Huarng K. (2008), A bivariate fuzzy time series model to forecast TAIEX, ʻExpert Systems with Applicationsʼ, 34, 2945-2952.
  • Yu T.H-K. and Huarng K. (2010), A neural network- based fuzzy time series model to improve forecasting, ʻExpert Systems with Applicationsʼ, 37, 3366-3372.
  • Zadeh L.A. (1965), Fuzzy Sets, Inform and Control, 8, 338-353.
  • Zurada J.M. (1992), Introduction of artificial neural systems, St, Paul: West Publishing.
  • Zhang G., Patuwo B.E. and Hu Y.M. (1998), Forecasting with artificial neural networks: the state of the art, ʻInternational Journal of Forecastingʼ, 14, 35-62.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171429764

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.