Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | Modelowanie preferencji a ryzyko '98 | 15--35
Tytuł artykułu

Multicriterion analysis under uncertainty: the approach of outranking synthesis

Warianty tytułu
Języki publikacji
The multicriterion analysis, besides all the other analysis that try to help in the decision making process, is subject to various forms of imperfection of the available data. In multicriterion analysis, we can find this notably at the level of the perfomance evaluation of the action according to each one of the criterion used. The form of imperfection that interests us here concerns the uncertainty, in the sense of probability, concerning these performance evaluations. Up to quite recently, this context of decision was treated nearly exclusively in the multiattribute utility theory framework. This theory leads to the setting of multicriterion aggregation procedures that belong to the approach of a single criterion analysis. However, in the context of multiattribute uncertainty, it is quite natural to judge a little illusive that it may be possible to associate, through this single criterion, a value having an absolute discriminating power. (fragment of text)
  • Université Laval, Canada
  • Azondékon H.S., Martel J.M. (1995). Multicriterion Analysis with Heterogeous Attributes and Incomplete Information in a Non-deterministic Context. International Transactions in Operational Research, 2, 1, 75-88.
  • Azondékon H.S., Martel J.M. (1998). 'Value' of Additionnai Information in Multicriterion Analysis under Uncertainty. European Journal of Operational Research (to appear).
  • Ben Klélifa S., Martel J.M. (1998). A Distance-Based Collective Weak Ordering. Doc. de travail 1998-019, Fac. des sc. de l'adm., Université Laval.
  • D'Avignon G.R., Vincke Ph. (1988). An Outranking Method Under Uncertainty. European Journal of Operational Research, 36, 311-321.
  • Derot B., Gareau J., Kiss L.N., Martel J.M. (1997). The Solver of VOLVOX Multicriterion Table. In Climaco (ed.). Multicriterion Analysis, Springer Verlag, Berlin, 113-125.
  • Dendrou B.A., Dendrou S.A., Houtis E.N. (1980). Multiobjective Decisions Analysis for Engineering Systems. Comput. & Ops. Res., 7, 310-312.
  • Fishburn P.C. (1965). Analysis of Decisions with Incomplete Knowledge of Probabilities. Operations Research, 13, 2, 217-237.
  • Hadar J., Russel W. (1969). Rules for Ordering Uncertain Prospect. American Economic Review, 58, 25-34.
  • Huang C.C., Kira D., Vertinsky I. (1978). Stochastic Dominance Rules for Multiattribute Utility Functions. Review of Economic Studies, 41, 611-616.
  • Jacquet-Lagrèze E. (1977). Modelling Preferences Among Distributions Using Fuzzy Relations. In Jungermann and de Zeeuw (eds.). Decision Making and Change in Humain Affairs. D.Reidel Publishing Co.
  • Keeney R.L., Raiffa H. (1976). Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York.
  • Mareschal B. (1986). Stochastic Multicriteria Decision Making and Uncertainty. European Journal of Operational Research, 26, 58-64.
  • Martel J.M., Azondékon S., Zaras K. (1992). Preference Relations in Multicriterion Analysis under Risk. JORBEL, 31, 3-4, 55-83.
  • Martel J.M., Zaras K., Azondékon S.H. (1993). Multicriterion Analysis under Uncertainty with Partial linear Information. Journal of Information Science and Technology, 2, 2, 124-135.
  • Martel J.M., D'Avignon R.G. (1982). Projects Ordering With Multicriteria Analysis. European Journal of Operational Research, 10, 59-69.
  • Martel J.M., D'Avignon G.R., Couillard J. (1986). A Fuzzy Relation in Multicriteria Decision Making. European Journal of Operational Research, 25,258-271.
  • Martel J.M., Kiss L.R., Rousseau A. (1997). PAMSSEM: Procédure d'agrégation multicritère de type surclassement de synthèse pour évaluations mixtes. Doc. de travail, Fac. des sc. de l'adm., U. Laval.
  • Martel J.M., Zaras K, (1995). Stochastic Dominance in Multicriterion Analysis under Risk. Theory and Decision, 39, 31-49.
  • Martel J.M., Zaras K. (1997). Modeling Preferences Using Stochastic and Probabilistic Dominances. Doc. de travail 1997-011, Fac. des sc. de 1'adm., U. Laval.
  • Munda G. (1995). Multicriteria Evaluation in a Fuzzy Environment. Physica-Verlag, Heidelberg.
  • Roy B., Bouyssou D. (1993). Aide multicritère à la décision : méthodes et cas. Économica, Paris.
  • Roy B., Slowinski R. (1993). Criterion of Distance Between Technical Programming and Socio-economic Priority. RAIRO : Recherche opérationnelle, 27, 45-60.
  • Vanderpooten D. (1990). The Construction of Prescriptions in Outranking Methods. In Bana e Costa (eds.). Readings in multiple criteria decision aid. Springer Verlag, Berlin, 184-215.
  • Vansnick J.C. (1990). Measurement Theory and Decision Aid. In Bana e Costa (eds.). Readings in multiple criteria decision aid. Springer Verlag, Berlin, 81-100.
  • Whitmore G.A. (1970). Third-Degree Stochastic Dominance. American Economic Review, 60, 27, 457-459.
  • Wrather C., Yu P.L. (1982). Probability Dominance in Random Outcomes. Journal of Optimization Theory and Application, 36, 3, 315-334.
  • Zaras K. (1989). Dominance stochastique pour deux classes de fonction d'utilité: concaves et convexes. RAIRO (Recherche opérationnelle/Operations Research), 23, 1, 57-65.
  • Zaras K., Martel J.M. (1995). Une méthode multicritère de rangement de projets face au risque. Compte-rendu ASAC 1995 - Management science/Recherche opérationnelle, 16, 2, 135-144.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.