PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | nr 3 | 126--137
Tytuł artykułu

Modern Methods for the Monitoring of Microbial Risk in Archives and Museum

Warianty tytułu
Nowoczesne metody monitoringu zagrożenia mikrobiologicznego w archiwach i muzeach
Języki publikacji
EN
Abstrakty
EN
The environment of rooms where archival and historical objects are stored has to be monitored permanently for microbiological risk assessment reasons. Microclimate parameters in store rooms as well as in exhibition rooms have to be maintained at required levels. They expected values depend on type of material that is stored in examined place. The most important parameter of microclimate seems to be relative humidity (RH). When it values is to low it can cause irreversible changes in some materials: desiccation leading to breaks and other physical changes in structure. At high RH many species of microorganisms can develop on historical objects and cause their deterioration. The risk of potential microorganisms' growth on historical object is mostly assessed with classical microbial methods, i.e. incubation on broths, or indirectly by observations of visible changes on the surface of objects. These alterations are a consequence of biodeterioration. Nowadays other methods are examined as a tool for fast, noninvasive and precise detection of microorganisms. These are mostly culture-independent techniques. One of them, which becomes increasingly popular, is isolation of DNA from microorganisms present in indoor air or on the surface of historical objects. Afterward DNA is analyzed with PCR-DGGE technique and as a result a taxonomical biodiversity of microorganisms, which were detected in museum environment, is defined. Other method of microorganisms' detection is based on investigation of secondary metabolites that are characteristic for defined group of microorganisms, and production of these compounds is an indication of deteriorative activity of microorganisms. Some of these metabolites are volatile and they can be analyzed with GC-MS method. They are called Microbial Volatile Organic Compounds (MVOCs). This article contains a detail description of application of GC-MS method for analysis of MVOCs emitted by selected moulds growing on model historical materials. (original abstract)
Środowisko przechowywania materiałów archiwalnych i obiektów muzealnych powinno być stale monitorowane w kontekście zagrożenia mikrobiologicznego. W pomieszczeniach magazynowych i salach wystawienniczych wymagane jest utrzymywanie stabilnych warunków klimatycznych w różnym zakresie w zależności od rodzaju przechowywanych materiałów. Zbyt niska wilgotność może powodować nieodwracalne zmiany: naprężenia prowadzące do pęknięcia materiałów i inne fizyczne zmiany; zbyt wysoka stwarza dogodne warunki do rozwoju mikroorganizmów. Zdolność do rozwoju mikroorganizmów w danych warunkach jest szacowana na podstawie badań mikrobiologicznych prowadzonych metodami hodowlanymi i pośrednio na obserwacji zmian na obiektach świadczących o biodeterioracji. Obecnie poszukuje się szybszych, nieinwazyjnych metod detekcji obecności mikroorganizmów opartych na technikach niehodowlanych. Jedną z nich, zyskujących powszechne znaczenie, jest izolacja DNA mikroorganizmów z powietrza wewnętrznego i obiektów zabytkowych i poddanie go analizie PCR-DGGE (reakcja łańcuchowa polimerazy - elektroforeza w gradiencie czynnika denaturującego), która umożliwia określenie bioróżnorodności taksonomicznej w danym środowisku muzealnym. Inna grupa metod opiera się na wykrywaniu charakterystycznych dla danej grupy mikroorganizmów wtórnych metabolitów, które mogą wskazywać na ich niszczącą aktywność. W tym artykule szczegółowo opisano zastosowanie metody GC-MS (chromatografii gazowej - spektrometrii mas) i analizy profilu lotnych związków organicznych (MVOC's) emitowanych przez grzyby pleśniowe w trakcie ich rozwoju na materiałach zabytkowych. (abstrakt oryginalny)
Rocznik
Numer
Strony
126--137
Opis fizyczny
Twórcy
  • Cracow University of Economics, Poland
  • Cracow University of Economics, Poland
Bibliografia
  • [1] Ashley-Smith J., Derbyshire A., Pretzel B., 2002, The continuing development of practical lighting policy for works of art on paper and other object types at the Victoria and Albert Museum. In: Preprints of the ICOM-CC triennial, Rio, 3-8.
  • [2] Betancourt D.A., Krebs K., Moore S.A., Martin S.M., 2013, Microbial volatile organic compound emissions from Stachybotrys chartarum growing on gypsum wallboard and ceiling tile, BMC Microbiology, 13, 283-293.
  • [3] Bingley G.D., Verran J., Munro L.J., Craig E., Banks C.E., 2012, Identification of microbial volatile organic compounds (MVOCs) emitted from fungal isolates found on cinematographic film. Analytical Methods, 4, 1265-1271.
  • [4] BSI Standards Publication PD 5454:2012, Guide for the storage and exhibition of archival materials. British Standards Institutions, 2012.
  • [5] Canhoto O., Pinzari F., Fanelli C., Mangan N., 2004, Application of electronic nose technology for the detection of fungal contamination in library paper. International Biodeterioration and Biodegradation, 54, 303-309.
  • [6] Fiedler K., Schütz E., Geh S., 2001, Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204, 111-121.
  • [7] Hess-Kosa K., 2002, Indoor air quality - sampling methodologies, Lewis Publisher.
  • [8] Gutarowska B., Piotrowska M., 2007, Methods of mycological analysis in buildings. Building and Environment, 42, 1843-1850.
  • [9] ISO/DIS 14698-1.2, 2001, Cleanrooms and associated controlled environments - Biocontamination control.
  • [10] Karbowska-Berent J., Górny R., Strzelczyk a., Wlazło A., 2011, Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46, 1872-1879.
  • [11] Kuske M., Romain A.-C., Nicolas J., 2005, Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Building and Environment, 40, 824-831.
  • [12] Lancker F., Adams A., Delmulle B., De Saeger S., Moretti A., Van Peteghem C., De Kimpe N., 2008, Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. Journal of Environmental Monitoring, 10, 1127-1133.
  • [13] Lavine B.K., Mirjankar N., LeBouf R., Rossner A., 2012, Prediction of mold contamina-tion from microbial volatile organic compound profiles using solid phase microextraction and gas chromatography/mass spectrometry. Microchemical Journal, 103, 37-41.
  • [14] Lech T., 2015, Molecular biology methods to assess microbiological hazard concerning objects of cultural heritage. British Microbiology Research Journal (in press).
  • [15] Lech T., Ziembińska-Buczyńska A., 2015, Evaluation of a modified sampling method for molecular analysis of air microflora, Genetics and Molecular Research, 14 (2), 3200-3208.
  • [16] Lech T., Ziembińska-Buczyńska A., Krupa N., 2015, Analysis of microflora present on historical textiles with the use of molecular techniques. International Journal of Conservation Science, 6 (2), 137-144.
  • [17] Łojewski T., Jacob T., Gołąb R., Kawałko J., Łojewska J., 2011, Note: Light ageing simultaneous colorimetry via fibre optics reflection spectrometry. Review of Scientific Instruments, 82, 076102.
  • [18] Łojewski T., Sawoszczuk T., Łagan J.M., Zięba K., Barański A., Łojewska J., 2010, Furfural as a marker of cellulose degradation. A quantitative approach, Applied Physics A: Materials, 100 (3),873-884.
  • [19] Łojewski T., Zięba K., Sawoszczuk T., 2008, Trwałość odkwaszonego papieru w atmosferze gazów kwaśnych, [w:] Nauka i Zabytki, Warszawa, 83-92 (in Polish).
  • [20] Menetrez M.Y., Foarde K.K., 2002, Microbial volatile organic compound emission rates and exposure model. Indoor and Built Environment, 11, 208-213.
  • [21] Nielsen K.-F., 2003, Mycotoxin production by indoor molds. Fungal Genetics and Biology, 39, 103-117.
  • [22] Matysik S., Herbarth O., Mueller A., 2008, Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. Journal of Microbiological Methods, 75, 182-187.
  • [23] Michaelsen A., Pinar G., Montanari M., Pinzari F., 2009, biodeterioration and restoration of 16th-centry book using a combination of conventional and molecular techniques: A case study, International Biodeterioration and Biodegradation, 63, 161-168.
  • [24] Padfield T., Larsen P.K., Jensen L.A., Ryhl-Sendsen M., 2007, The potential and limits for passive air conditioning of museums, stores and archives. In: Museum microclimates: conference on preventive conservation held in Copenhagen 19-23 November 2007, 191-198.
  • [25] PAS 198:2012 Specification for managing environmental conditions for cultural collections, The British Standard Institution 2012.
  • [26] Polizzi V., Adams A., De Saeger S., Van Peteghem C., Moretti A., De Kimpe N., 2012, Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds. Science of the Total Environment, 414, 277-286.
  • [27] PN-ISO 11799:2006, Informacja i dokumentacja. Wymagania dotyczące warunków przechowywania materiałów bibliotecznych (in Polish).
  • [28] Sawoszczuk T., Barański A., Łagan J. M., Łojewski T., Zięba K., 2008, On the use of ASTM closed vessel tests in accelerated ageing research. Journal of Cultural Heritage, 9 (4), 401-411.
  • [29] Sawoszczuk T., Syguła-Cholewińska J., del Hoyo-Melendez J.M., 2015, Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds by emitted by fungi: Application to historical objects. Journal of Chromatography A. doi.org/10.1016/j.chroma.2015.07.059.
  • [30] Schabereiter-Gurtner C., Pinar G., Lubitz W., Rolleke S., 2001, An advanced molecular strategy to identify bacterial communities on art objects. Journal of Microbiological Methods, 45, 77-78.
  • [31] Sedlbauer K., Krus M., 2003, A new model for mold prediction and its application in practice. In: Research in Building Physics, 921-928.
  • [32] Skóra J., Gutarowska B., Pielech-Przybylska K., Stępień Ł., Pietrzak K., Piotrowska M., Pietrowski P., 2015, Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia. doi: 101007/s10453-015-9372-8.
  • [33] Stirlitč M. et al., 2010, Test for compatibility with organic heritage materials - a proposed procedures. E-Preservation Science, 7, 78-86.
  • [34] Ström G., West J., Wessén B., Palmgren U., 1994, Quantitative analysis of microbial volatiles in damp Swedish houses. [in:] Samson R.A., Flannigan B., Flannigan M.E., Verhoeff A.P., Adan O.C.G., Hoekstra E.S. (eds) Health implications of fungi in indoor environments. Air quality monographs. Amsterdam, The Netherlands: Elsevier Science B.V.; Vol. 2, pp. 291-305.
  • [35] Sunesson A.-L., Nilsson C.-A., Andersson B., Bolmquist G., 1996, Volatile metabolites produced by two fungal species cultivated on building materials. Annals of Occupational Hygiene, 40 (4), 397-410.
  • [36] Wilkins K., Larsen K., 1995, Variation of volatile organic compound patterns of mold species from damp buildings. Chemosphere, 31 (5), 3225-3236.
  • [37] Wilkins K., Larsen K., Simkus M., 2000, Volatile metabolites from mold growth on building materials and synthetic media, Chemosphere, 41 (3), 437-446.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171435962

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.