PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 4 | nr 2 | 34--42
Tytuł artykułu

Machine-learning methods in the classification of water bodies

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amphibian species have been considered as useful ecological indicators. They are used as indicators of environmental contamination, ecosystem health and habitat quality., Amphibian species are sensitive to changes in the aquatic environment and therefore, may form the basis for the classification of water bodies. Water bodies in which there are a large number of amphibian species are especially valuable even if they are located in urban areas. The automation of the classification process allows for a faster evaluation of the presence of amphibian species in the water bodies. Three machine-learning methods (artificial neural networks, decision trees and the k-nearest neighbours algorithm) have been used to classify water bodies in Chorzów - one of 19 cities in the Upper Silesia Agglomeration. In this case, classification is a supervised data mining method consisting of several stages such as building the model, the testing phase and the prediction. Seven natural and anthropogenic features of water bodies (e.g. the type of water body, aquatic plants, the purpose of the water body (destination), position of the water body in relation to any possible buildings, condition of the water body, the degree of littering, the shore type and fishing activities) have been taken into account in the classification. The data set used in this study involved information about 71 different water bodies and 9 amphibian species living in them. The results showed that the best average classification accuracy was obtained with the multilayer perceptron neural network.(original abstract)
Rocznik
Tom
4
Numer
Strony
34--42
Opis fizyczny
Twórcy
  • University of Silesia in Katowice, Sosnowiec, Poland
  • Silesian University of Technology, Katowice, Poland
  • University of Silesia in Katowice, Sosnowiec, Poland
Bibliografia
  • Aglomeracja śląska w liczbach. Główny Urząd Statystyczny, Katowice, 2006.
  • Blachnik M., Kordos M. 2015. Information Selection and Data Compression Rapid Miner Library. [in:] Machine Intelligence and Big Data in Industry. Springer, 2016.
  • Bruyne S. 2010. Process, Data and Classifier Models for Accessible Supervised Classification Problem Solving. VubPress.
  • Cover T., Hart P. 1967. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory, 13,.1: 21-27.
  • Dai W., Ji W. 2014. A Map Reduce Implementation of C4.5 Decision Tree Algorithm. Int. J. Database Theory and Appl., 7, 1: 49-60.
  • Deveze B., Fouquin M. 2005. Datamining C4.5 - DBSCON, PROMOTION, SCIA Ecole pour. I' informatique et techniques avancees.
  • Gardner M., Dorling S. 1998. Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmos. Environ., 32, 14/15: 2627-2636.
  • Gong P., Howarth P.J. 1990. An assessment of some factors influencing multispectral land-cover classification. Photogram. Eng. Remot. Sens., 56: 597-603.
  • Han E. 1999. Text categorization using weight adjusted k-nearest neighbors classification. PhD thesis, Univ. Minnesota.
  • Hodge V., Austin J. 2004. A Survey of Outlier Detection Methodologies. Artif. Intel. Rev., 22, 2: 85-126.
  • http://e-odgik.chorzow.eu/GeoOsrodek/mapa.aspx?wybor=no&control=no&idProject=443
  • IUCN Red List - Search Results". IUCN Red List of Threatened Species. Version 2010.3. IUCN. Retrieved September 8, 2010.
  • Jain A., Mao J., Mohiuddin K. 1996. Artificial neural networks - a tutorial. Computer: 31-44.
  • Kotsiantis S.B. 2007. Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31: 249-268.
  • Lopez H., Ek A., Bauer M. 2001. Estimation and mapping of forest stand density, volume and cover type using k - nearest neighbors method. Remot. Sens. Environ., 77, 3: 251-274.
  • Machowski R., Noculak M. 2014. Anthropogenic change in water bodies in the southern part of the Silesian Upland. Limnological Rev., 14, 2: 93-100.
  • Mapa topograficzna 1:10 000, arkusze: Świętochłowice, Chorzów, Ruda Śląska-Kochłowice, Chorzów Batory. CODGIK, 1993.
  • Nourani V., Alami MT., Aminfar MH. 2008. A combined neural-wavelet model for prediction of watershed precipitation. Ligvanchai, Iran. J. Environ. Hydrol., 16: 1-12.
  • Nourani V., Komasi M., Mano A. 2009. A Multivariate ANN-Wavelet Approach for Rainfall-Runoff Modeling. Water Resour. Manage., 23: 2877-2894.
  • Oertli B., Joye D.A., Castella E., Juge R., Cambin D., Lachavanne J.B. 2002. Does size matter? The relationship between pond area and biodiversity. Biol. Conserv., 104: 59-70.
  • Perlich C. 2011. Learning Curves in Machine Learning. [in:] Sammut C., Webb G. I. (eds.) Encyclopedia of Machine Learning. Springer: 577-580.
  • Quinlan J.R. 1993. C4.5: programs for machine learning. Morgan Kaufmann.
  • Rocznik Statystyczny Polski. Główny Urząd Statystyczny, Warszawa, 2015.
  • Ruck D. W., Rogers S. K., Kabrisky M. 1989. Tactical target recognition: Conventional and neutral network approaches. Proc. 5th Ann. Aerospace Appl. Artif. Intel. Configure: 247-253.
  • Rumelhart D., McClelland J., PDP Research Group. 1987. Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
  • Rzętała M. 2008. Funkcjonowanie zbiorników wodnych oraz przebieg procesów limnicznych w warunkach zróżnicowanej antropopresji na przykładzie region górnośląskiego. Uniw. Śląski, Katowice.
  • Sammut C., Webb G. (eds.) 2010. Encyclopedia of Machine Learning. Springer, p. 1031.
  • Scheffer M., van Ness E. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiol. Bul., 584
  • Sołtysiak M. 2004. Inwentaryzacja miejsc występowania płazów w Chorzowie - wstępne wyniki badań. [in:] Biologia płazów i gadów - ochrona herpetofauny. Uniw. Pedagogiczny w Krakowie, Kraków: 122-126.
  • Sołtysiak M., Dąbrowska D. 2014. Is there a space for amphibians in the space of Chorzów city and Sosnowiec city? Urban Fauna, Univ of Sci. and Techn., in Bydgoszcz, Bydgoszcz: 161-168.
  • Sołtysiak M., Dąbrowska D. 2015. Presence of small reservoirs in the city space on the example of Chorzów. PhD Interdiscipl. J., 1, Gdańsk: 27-36.
  • Wu X., Kumar V., Quinlan J., Ghos J., Yang Q., Motoda H., McLachlan G., Ng A., Liu B., Yu P., Zhou Z., Steinbach M., Hand D., Steinberg D. 2008. Top 10 algorithms in data mining. Knowl. Inf. Syst., 14: 1-37
  • www.geoportal.gov.pl
  • Zhang S., Zhang C., Yang Q. 2002. Data Preparation for Data Mining. Appl. Artif. Intel., 17: 375-381.
  • Zhu, Xiangxin, et al. 2012, "Do We Need More Training Data or Better Models for Object Detection?." BMVC. Vol. 3.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171438912

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.