PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | nr 4 | 65--73
Tytuł artykułu

Direct Measurement of Antiradical Capacity of Oilseed Cakes by DPPH Assay Using the QUENCHER Approach

Treść / Zawartość
Warianty tytułu
Ocena właściwości przeciwrodnikowych wytłoków z roślin oleistych w teście z DPPH z wykorzystaniem bezpośredniej techniki QUENCHER
Języki publikacji
EN
Abstrakty
EN
The oilseed by-products are the sources of substances with antioxidant potential, including antiradical capacity. As the extract is not representative of the antioxidant capacity of plant material, the novel approach called QUENCHER was developed by Serpen et al. It is based on the direct measurement of absorbance after mixing the solid samples with the free radical, which doesn't require the preparation of the extract. The aim of this study was to evaluate the antiradical activity of oilseed cakes using the direct QUENCHER procedure. The material was obtained from: coconut, peanut, walnut, sesame, black cumin, evening primrose, flaxseed, pumpkin seeds, and sunflower seeds. The ground cakes were diluted with powdered cellulose and mixed with ethanolic solution of DPPH (2,2-diphenyl-1-picrylhydrazyl). The absorbance of supernatants was measured at λ=515 nm. In parallel, the oilseed cakes were extracted with 80% ethanol and the antiradical activity of the extracts against DPPH was measured. The results of the study proved the antiradical activity of oilseed cakes. The highest antiradical properties assessed by the QUENCHER procedure were found in the evening primrose and walnut cakes (134.6 and 128.5 μmol Trolox/g d.m., respectively), followed by sunflower seeds, black cumin and peanut residues. The results obtained with the use of the direct procedure gave higher values, showing that the antiradical potential of plant material is greater than that measured in the extract. (original abstract)
Produkty uboczne przemysłu olejarskiego są źródłem substancji o właściwościach przeciwutleniających, w tym przeciwrodnikowych. Ponieważ badanie ekstraktu nie oddaje w pełni potencjału antyoksydacyjnego badanego materiału, Serpen i in. zaproponowali nowe podejście do badania stałych próbek. W bezpośredniej technice QUENCHER badanie właściwości przeciwutleniających nie jest poprzedzone prowadzeniem ekstrakcji, gdyż pomiar absorbancji dokonywany jest bezpośrednio po wymieszaniu badanej próbki z rodnikiem. Celem pracy była ocena właściwości przeciwrodnikowych wytłoków roślin oleistych z wykorzystaniem techniki QUENCHER. Materiał badawczy stanowiły wytłoki z kokosa, orzecha arachidowego, włoskiego, sezamu, czarnuszki, wiesiołka, lnu, nasion dyni oraz słonecznika. Zmielony wytłok został na sucho rozcieńczony za pomocą sproszkowanej celulozy, a następnie wymieszany z etanolowym roztworem rodnika DPPH (2,2-diphenyl-1-picrylhydrazyl). Pomiarów absorbancji dokonywano przy λ=515 nm. Dla porównania, oceniono aktywność przeciwrodnikową etanolowych ekstraktów z wytłoków, zgodnie z dotychczas stosowaną procedurą testu DPPH. Wyniki przeprowadzonych badań dowiodły przeciwrodnikowych właściwości badanych wytłoków. Najwyższą aktywnością oznaczoną za pomocą bezpośredniej techniki QUENCHER charakteryzował się wytłok z wiesiołka (134,6 μmoli Troloxu/g s.m.) i orzecha włoskiego (128,5 μmoli Troloxu/g s.m.), a następnie z nasion słonecznika, czarnuszki oraz orzecha arachidowego. Wyniki uzyskane za pomocą procedury bezpośredniej były wyższe, co wskazuje na wyższy potencjał antyrodnikowy materiału roślinnego niż wynika z badania eks-traktów. (abstrakt oryginalny)
Rocznik
Numer
Strony
65--73
Opis fizyczny
Twórcy
  • Poznań University of Economics, Poland
  • Poznań University of Economics, Poland
  • Poznań University of Economics, Poland
Bibliografia
  • [1] Açar Ö. Ç., Gökmen V., Pellegrini N., Fogliano V., 2009, Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. European Food Research and Technology, 229, 961-969.
  • [2] Apak R., Guclu K., Ozyurek M., Karademir S.E., 2004, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981.
  • [3] AOAC (1990) AOAC Official Method 925.09: Solids (total) and moisture in flour. Washington, DC: The Association of Analytical Chemists.
  • [4] Benzie I.F.F., Strain J.J., 1996, The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239, 70-76.
  • [5] Bonoli M., Verardo V., Marconi E., Caboni M., 2004, Antioxidant phenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. Journal of Agricultural and Food Chemistry, 52, 5195-5200.
  • [6] Boskou D., 2006, Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17, 505-512.
  • [7] Brand-Williams W., Cuvelier M.E., Berset C., 1995, Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28, 25-30.
  • [8] Chatha S.A.S., Anwar F., Manzoor M., Bajwa J.R., 2006, Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays. Grasas y Aceites, 57, 328-335.
  • [9] Condezo-Hoyos L., Abderrahim F., Arriba S.M., González M.C., 2015, A novel, micro, rapid and direct assay to assess total antioxidant capacity of solid foods. Talanta, 138, 108-116.
  • [10] Ghirardello D., Prosperini S., Zeppa G., Gerbi V., 2010, Phenolic acid profile and anti-oxidant capacity of hazelnut (Corylus avellana L.) kernels in different solvent systems. Journal of Food and Nutrition Research, 49, 195-205.
  • [11] Gökmen V., Serpen A., Fogliano V., 2009, Direct measurement of the total antioxidant capacity of foods: the 'QUENCHER' approach. Trends in Food Science & Technology, 20, (6-7), 278-288.
  • [12] Hosseinian F.S., Muir A.D., Westcott N.D., Krol E.S., 2006, Antioxidant capacity of flaxseed lignans in two model systems. Journal of American Oil Chemists' Society, 83, 835-840.
  • [13] Huang D., Ou B., Prior R.L., 2005, The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841-1856.
  • [14] Kitrytė V., Šaduikis A., Venskutonis P.R., 2014, Assessment of antioxidant capacity of brewer's spent grain and its supercritical carbon dioxide extract as sources of valuable dietary ingredients, (in press), Journal of Food Engineering, doi:10.1016/j. jfoodeng.2014.12.005.
  • [15] Martinez M.L., Labuckas D.O., Lamarque A.L., Maestri D.M., 2010, Walnut (Juglans regia L.): genetic resources, chemistry, by-products. Journal of the Science of Food Agriculture, 90, 1959-1967.
  • [16] Michiels J.A., Kevers, C., Pincemail, J., Defraigne, J.O., Dommes, J., 2012, Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chemistry, 130, 986-993.
  • [17] Naczk M., Shahidi F., 2006, Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, 1523-1542.
  • [18] Ou B., Huang D., Hampsch-Woodill M., Flanagan J.A., Deemer E.K., 2000, Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. Journal of Agricultural and Food Chemistry, 50, 3122-3128.
  • [19] Pachołek B., Małecka M., 2000, Pestki z czarnej porzeczki jako źródło naturalnych przeciwutleniaczy/blackcurrant seeds as a source of natural antioxidants. Rośliny Oleiste - Oilseed Crops (in Polish, abstract in English), XXI, 2, 675-682.
  • [20] Pastoriza S., Delgado-Andrade C., Haro A., Rufián-Henares J.A., 2011, A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chemistry, 129, 1926-1932.
  • [21] Pérez-Jiménez J., Arranz S., Tabernero M., Díaz-Rubio M.E., Serrano J., Goñi I., Saura-Calixto F., 2008, Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 41, 274-285.
  • [22] Pérez-Jiménez J., Saura-Calixto F., 2006, Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39, 791-800.
  • [23] Pinelo M., Manzocco L., Nuñez M.J., Nicoli M.C., 2004, Solvent effect on quercetin antioxidant capacity. Food Chemistry, 88, 201-207.
  • [24] Prior R.L., (in press), Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, doi: 10.1016/j.jff.2014.12.018.
  • [25] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., 1999, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-1237.
  • [26] Rufian-Henares , J.A., Delgado-Andrade, C., 2009, Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals, Food Research International, 42, 394-400.
  • [27] Salcedo C., López de Mishima B.A., Nazareno M.A., 2010, Walnuts and almonds as model systems of foods constituted by oxidisable, pro-oxidant and antioxidant factors. Food Research International, 43, 1187-1197.
  • [28] Samotyja U., Małecka M., 2010, Antioxidant activity of blackcurrant seeds extract and rosemary extracts in soybean oil. European Journal of Lipid Science and Technology, 112, 1331-1336.
  • [29] Serpen A., Gökmen V., Fogliano V., 2012, Solvent effects on total antioxidant capacity of foods measured by direct QUENCHER procedure. Journal of Food Composition and Analysis, 26, 52-57.
  • [30] Serpen A., Gökmen V., Pellegrini N., Fogliano V., 2008, Direct measurement of the total antioxidant capacity of cereal products. Journal of Cereal Science, 48, 816-820.
  • [31] Schmidt S., Pokorny J., 2006, Potential application of oilseeds as sources of antioxidants for food lipids. Czech Journal of Food Science, 23, 93-102.
  • [32] Serpen, A., Capuano, E., Fogliano, V., Gökmen, V., 2007, A new procedure to measure the antioxidant activity of insoluble food components. Journal of Agricultural and Food Chemistry, 55, 7676-7681.
  • [33] Serrano J., Gońi I., Saura-Calixto F., 2007, Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Research International, 40, 15-21.
  • [34] Sielicka M., Małecka M., Purłan M., 2014, Comparison of the antioxidant capacity of lipid-soluble compounds in selected cold-pressed oils using photochemiluminescence assay (PCL) and DPPH method. European Journal of Lipid Science and Technology, 4, 388-394.
  • [35] Sielicka M., Samotyja U., 2013, Solvent influence on antioxidant activity of selected cold-pressed oils. PhD Interdisciplinary Journal, 1, 67-74.
  • [36] Singleton V.L., Orthofer R., Lamuela-Raventos R.M., 1999, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299, 152-178.
  • [37] Terpinc P., Ceh B., Ulrih N.P., Abramovic H., 2012, Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210-217.
  • [38] Tufan A.N., Çelik S.E., Özyürek M., Güçlü K., Apak R., 2013, Direct measurement of total antioxidant capacity of cereals: QUENCHER-CUPRAC method. Talanta, 108, 136-142.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171443502

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.