Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 8 | nr 4 | 219--239
Tytuł artykułu

A Bayesian Approach to Matrix Balancing: Transformation of Industry-Level Data under NACE Revision

Treść / Zawartość
Warianty tytułu
Języki publikacji
We apply Bayesian inference to estimate transformation matrix that converts vector of industry outputs from NACE Rev. 1.1 to NACE Rev. 2 classification. In formal terms, the studied issue is a representative of the class of matrix balancing (updating, disaggregation) problems, often arising in the field of multi-sector economic modelling. These problems are characterised by availability of only partial, limited data and a strong role for prior assumptions, and are typically solved using bi-proportional balancing or cross-entropy minimisation methods. Building on Bayesian highest posterior density formulation for a similarly structured case, we extend the model with specification of prior information based on Dirichlet distribution, as well as employ MCMC sampling. The model features a specific likelihood, representing accounting restrictions in the form of an underdetermined system of equations. The primary contribution, compared to the alternative, widespread approaches, is in providing a clear account of uncertainty. (original abstract)
Opis fizyczny
  • University of Łódź, Poland
  • [1] Aitchison, J. (1982), The statistical analysis of compositional data, Journal of the Royal Statistical Society. Series B (Methodological), 44(2), 139-177.
  • [2] Aitchison, J. and Shen, S. (1980), Logistic-normal distributions: Some properties and uses, Biometrika, 67(2), 261-272.
  • [3] Bolshev, L., Dirichlet distribution, [in:] Rehmann, U., [ed.], Encyclopedia of Mathematics .
  • [4] van den Brakel, J. (2010), Sampling and estimation techniques for the implementation of new classification systems: the change-over from NACE Rev. 1.1 to NACE Rev. 2 in business surveys, [in:] Survey Research Methods, volume 4, pages 103-119.
  • [5] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A. (2016), Stan: A probabilistic programming language, Journal of Statistical Software, in press.
  • [6] Darroch, J. and Ratcliff, D. (1971), A characterization of the Dirichlet distribution, Journal of the American Statistical Association, 66(335), 641-643.
  • [7] Ferguson, T. (1973), A Bayesian analysis of some nonparametric problems, Annals of Statistics, 1(2), 209-230.
  • [8] Gilchrist, D. and St Louis, L. (1999), Completing input-output tables using partial information, with an application to Canadian data, Economic Systems Research, 11(2), 185-194.
  • [9] Golan, A., Judge, G. and Miller, D. (1996), Maximum entropy econometrics: Robust estimation with limited data, Wiley & Sons.
  • [10] Golan, A., Judge, G. and Robinson, S. (1994), Recovering information from incomplete or partial multisectoral economic data, Review of Economics and Statistics, 76(3), 541-549.
  • [11] Golan, A. and Vogel, S. J. (2000), Estimation of non-stationary social accounting matrix coefficients with supply-side information, Economic Systems Research, 12(4), 447-471.
  • [12] Heckelei, T., Mittelhammer, R. and Jansson, T. (2008), A Bayesian alternative to generalized cross entropy solutions for underdetermined econometric models, University of Bonn, Institute for Food and Resource Economics Discussion Paper No. 2.
  • [13] Jackson, R. and Murray, A. (2004), Alternative input-output matrix updating formulations, Economic Systems Research, 16(2), 135-148.
  • [14] Junius, T. and Oosterhaven, J. (2003), The solution of updating or regionalizing a matrix with both positive and negative entries, Economic Systems Research, 15(1), 87-96.
  • [15] Lahr, M. and De Mesnard, L. (2004), Biproportional techniques in input-output analysis: table updating and structural analysis, Economic Systems Research, 16(2), 115-134.
  • [16] Lenzen, M., Gallego, B. and Wood, R. (2009), Matrix balancing under conflicting information, Economic Systems Research, 21(1), 23-44.
  • [17] Lenzen, M., Moran, D., Geschke, A. and Kanemoto, K. (2014), A non-sign-preserving ras variant, Economic Systems Research, 26(2), 197-208.
  • [18] McDougall, R. (1999), Entropy theory and ras are friends, GTAP Working Papers, (6).
  • [19] Miller, R. and Blair, P. (2009), Input-output analysis: foundations and extensions, Cambridge University Press.
  • [20] Osiewalski, J. (2001), Ekonometria bayesowska w zastosowaniach, Wydawnictwo Akademii Ekonomicznej w Krakowie.
  • [21] Peters, J. and Hertel, T. (2016), Matrix balancing with unknown total costs: preserving economic relationships in the electric power sector, Economic Systems Research, 28(1), 1-20.
  • [22] Robinson, S., Cattaneo, A. and El-Said, M. (2001), Updating and estimating a social accounting matrix using cross entropy methods, Economic Systems Research, 13(1), 47-64.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.