Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | nr IV/1 | 1179--1193
Tytuł artykułu

Flue Gas Cleaning in Municipal Waste-to-Energy Plants. Part 1

Treść / Zawartość
Warianty tytułu
Języki publikacji
All plants based on combustion of the fuel generate a large number of flue gases, which contain variety of pollutants. These include particulates, heavy metals (Hg, Cd, Tl, As, Ni, Pb), carbon compounds (CO, hydrocarbons (VOCs), (PCDD / F, PCB), acid and other gases (HCl, HF, HBr, HI, SO2 , NOx , NH3 ), whose emissions are controlled, and subjected to the European and regional limits. In municipal waste-to-energy plants large diversity of fuel results in a considerable concentration of the individual compounds which can be dangerous for the environment. Due to these facts, it is necessary to take into account a flue gas cleaning stage in every waste-to-energy plant. The article divided into two parts shows technologies and processes that can be used at this stage. It describes methods used to deal with all kinds of pollutants at flue gases treatment stage. The paper presents emission limits imposed by the European Union with examples of emissions at working municipal waste-to-energy plants, and the limits that are to be expected in the future. Some topics, as costs and residual handling, are only briefly mentioned and for more information a reader is advised to use literature which will allow him to learn more about technology, processes and problems presented in the text. The aim of the study is to present the current state of flue gas cleaning in Waste-to-Energy plants.(original abstract)
Opis fizyczny
  • University of Science and Technology in Krakow
  • Cologne University of Applied Science
  • University of Agriculture in Krakow
  • Achternbosch, M., Richers, U. (2002). Materials Flows and Investment Costs of Flue Gas Cleaning Systems of Municipal Solid Waste Incinerators. Karlsruhe.
  • Belevi, H. (1998). Environmental Engineering of Municipal Solid Waste Incineration. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland.
  • Belevi, H., Langmeier, M. (2000). Factors determining the element behaviour in municipal solid waste incinerators. 2. Laboratory experiments. Environ. Sci. Technol. 34, 2507-2512.
  • Belevi, H., Mönch, H. (2000). Factors determining the element behaviour in municipal solid waste incinerators. 1. Field studies. Environ. Sci. Technol. 34, 2501-2506.
  • Bickers P. (2013). Membranes: Expanded PTFE finds new markets. http://www.filtsep. com/view/30721/membranes-expanded-ptfe-finds-new-markets/(accessed 10.01.2016).
  • Bolhàr-Nordenkampf, M., Nummelin, T., Luomaharju, T., Viljanen, J. (2015). Operating Experience from the World´s Largest Waste Fired Circulating Fluidized Bed Reactor in Västerås. TK, Waste management 5, 168-178.
  • Buekens, A. (2013). Incineration Technologies. Springer.
  • Buekens, A., Yan, M., Jiang, X., Li, X., Lu, S., Chi, Y., Yan, J., Cen, K., Vehlow, J. (2011). Die thermische Abfallbehandlung in China. Müll und Abfall 43, 366-373.
  • Chandler, A.J., Eighmy, T.T., Hartlén, J., Hjelmar, O., Kosson, D.S., Sawell, S.E., van der Sloot, H.A., Vehlow, J. (1997). Municipal Solid Waste Incinerator Residues. Elsevier, Amsterdam, The Netherlands.
  • Darcovich, K., Jonasson, K.A., Capes, C.E. (1997). Developments in the control of fine particulate air emissions. Adv. Powder Technol. 8, 179-215.
  • Dittrich, R., Nowag, R. (2002). Vergleichende Beurteilung und Abscheideleistung von SNCR /SCRTechnik. VDI-Wissensforum: BAT und preisorientierte Rauchgasreinigungstechniken, München.
  • Ebert, J., Piccinin, C. (2012). Upgrade of municipal waste incineration systems with Gore® DeNOx filter for meeting stringent emission requirements on NOx, dust and NH3. In: Sidisa, Milano.
  • European Commission, (2006). Integrated Pollution Prevention and Control Reference Document on the Best Available Techniques for Waste Incineration.
  • European Parliament and Council, (2010). Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010on industrial emissions. Official Journal of the European Communities, 17.12.2010, L334/17.
  • Hunsinger, H., Kreisz, S., Vogg, H. (1994). Experiences gained from the sampling of chlorine aromatics in the raw gas of waste incineration plants. Organohalogen Compd. 19, 299-303.
  • Karpf, R. (2015). Überblick zur Abgasreinigung. 10. Fachtagung Abgasreinigung von Feuerungsanlagen und thermische Prozesse; Haus der Technik, Essen.
  • Klinghoffer, N. (2013). Waste to energy (WTE): an introduction. Woodhead Publishing, 3-14.
  • Mikropul. (2003). Wet Scrubbers. Company report.
  • Morf, L., Brunner, P.H., (1998). The MSW incinerator as a monitoring tool for waste management. Environ. Sci. Technol. 32, 1825-1831.
  • Lombardi, L., Carnevale, E., Corti, A. (2014). A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management, 37, 26-44.
  • Phongphiphat, A., Ryu, C., Finney, K.N., Sharifi, V.N., Swithenbank, J. (2011). Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant. J. Hazard. Mater, 186, 218-226.
  • Piecuch, T. (1998). Termiczna utylizacja odpadów i ochrona powietrza przed szkodliwymi składnikami spalin, Wydawnictwo Politechniki Koszalińskiej.
  • Poggio, A., Grieco E. (2010). Influence of flue gas cleaning system on the energetic efficiency and on the economic performance of a WTE plant. Waste Management, 30, 1355-1361.
  • Redecam. (2016). (accessed 10.01.2016).
  • Song, G.J., Kim, K., Seo, Y., Kim, S. (2004). Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices. Waste Management, 24, 99-106.
  • UBA. (2001). Draft of a German Report for the creation of a BREF-document "waste incineration", Umweltbundesamt.
  • U.S. Energy Information Administration. (2015). Annual Energy Outlook 2015. DOE/ EIA-0554. Washington.
  • U.S. EPA. (2013). Clean Air Act Requirements and History.
  • Van Caneghem J., Bremsb, A., Lievensa, P., Blocka, C., Billena, P., Vermeulena, I., Dewilb, R., Baeyensd, J., Vandecasteelea C. (2012). Fluidized bed waste incinerators: Design, operational and environmental issues. Progress in Energy and Combustion Science, 38, 551-582.
  • Von der Heide, B. (2008). SNCR Process - Best Available Technology forNOx Reduction in Waste to Energy Plants. Mehldau & Steinfath Umwelttechnik GmbH.
  • Vehlow, J. (2015). Air pollution control systems in WtE units: An overview. Waste Management, 37,58-74
  • Vehlow, J., Bergfeldt, B., Jay, K., Seifert, H., Wanke, T., Mark, F.E. (2000). Thermal treatment of E+E waste plastics. Waste Manage. Res. 18, 131-140.
  • WI-ordinance-17 BImSchV. (2013). Verordnung über die Verbrennung und die Mitverbrennung von Abfaeallen. Ausfertigungsdatum: 02.05.2013.
  • Xiaowen, S., Lin, Z., Yuxin, X., Mingming, S., Xue G., Jixin, S. (2015). Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technology, 286, 9-15.
  • Xin-gang, Z., Gui-wu, J., Ang, L., LiYun, L. (2016). Technology, cost, a performance of waste-to-energy incineration industry in China. Renewable and Sustainable Energy Reviews, 55,115-130.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.