Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr III/1 | 1075--1091
Tytuł artykułu

Radial Growth of Pedunculate Oak And European Ash on Active River Terraces : Hydrologic and Climatic Controls

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of this study was (1) to assess relationships binding hydroclimatic factors and radial growth of pedunculate oak and European ash growing on active terraces of river valleys; (2) to compare the growth reaction of these species from this location. Research site was located in a floodplain valley, within mid-course of the lowland section of the Warta River in the Lasy Czeszewskie Forest, Poland. The Warta River (length 808 km, basin area: 54,529 km2 ) is a mid-size European river, a tributary of the Odra River draining the North European Plain to the Baltic Sea. The sampled forest stand was an old growth composed of pedunculate oak and European ash mixed with other mature tree species. The main conclusions are: (1) ash in comparison to oak growing on the same site located on floodplains appeared to be both more sensitive to hydroclimatical features and less ecologically flexible as far as monthly pattern of water requirements is concerned, therefore adaptation to changing climatic conditions and drought may be a greater ecological challenge for ash than for oak in river valleys; (2) streamflow could be considered as the parameter that substituted precipitation well, or even was more important than precipitation, as far as availability of water for development of tree rings of ash and oak growing on active terraces of river valleys is concerned; however, the role of streamflow in radial growth developing decreased substantially during 20th century; (3) Standardized Precipitation Evapotranspiration Index (SPEI) as a measure of drought is a prospective parameter in dendroecological analysis, since it conveys real availability of water for trees.(original abstract)
Opis fizyczny
  • Poznań University of Life Sciences
  • Arnell, N.W. (1999). The Effect of Climate Change on Hydrological Regimes in Europe: A Continental Perspective. Global Environmental Change, 9: 5-23.
  • Banks, J.C.G. (1991). A review of the use of tree rings for the quantification of forest disturbances. Dendrochronologia, 9: 51-70.
  • Bartnik, A., Jokiel, P. (2012). Geografia wezbrań i powodzi rzecznych [The geography of high water and river floods]. Łódź: Wyd. Uniw.
  • Beguería, S., Vicente-Serrano, S.M., Reig, F., Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34 (10): 3001-3023.
  • Bohn, U., Gollub, G., Hettwer C. (2000). Map of the natural vegetation of Europe. Bonn: Federal Agency for Nature Conservation.
  • Bräker, O.U. (2002). Measuring and data processing in tree-ring research a methodological introduction. Dendrochronologia, 20(1-2): 203-216.
  • Bridge, J.S. (2003). Rivers and Floodplains: Forms, Processes, and Sedimentary Record. Oxford, UK: Blackwell.
  • Bunn, A.G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26: 115-124.
  • Chang, M. (2012). Forest Hydrology: An Introduction to Water and Forests (3rd ed.). Boca Raton: CRC/Taylor & Francis.
  • Charlton, R. (2008). Fundamentals of Fluvial Geomorphology. London: Routledge.
  • Cleary, M.R., Anderson, P.F., Broberg, A., Elfstrand, M., Daniel G., Stenlid J. (2014). Genotypes of Fraxinus excelsior with different susceptibility to the ash dieback pathogen Hymenoscyphus pseudoalbidus and their response to the phytotoxin viridiol - A metabolomic and microscopic study. Phytochemistry, 102: 115-125.
  • Computing, Vienna, Austria. URL
  • Cook, E.R. (1987). The decomposition of tree-ring series for environmental series. TreeRing Bulletin, 47: 37-59.
  • Cook, E.R., Briffa, K., Shiyatov, S., Mazepa, A., Jones, P.D. (1990). Data analysis. In: Cook, E.R., Kairiukstis L.A. (Eds.). Methods of Dendrochronology: Applications in the Environmental Sciences (pp. 97-162). Dordrecht: Kluwer Academic Publishers.
  • Cropper, J. (1984). Multicollinearity within selected western north American temperature and precipitation data sets. Tree-Ring Bulletin, 44: 29-37.
  • Cybis Elektronik & Data AB. Technical writing, software development, photography and dendrochronology software. (2017, March 25). Retrieved from
  • Czarnowski, M. (1989). Zarys ekologii roślin lądowych [Ecology of terrestrial plants]. Warszawa: PWN.
  • Dynowska, I. (1971). Typy reżimów rzecznych w Polsce [The types of river regimes in Poland]. Zeszyty Naukowe CCLXVIII. Prace Geogr., 28. Kraków: Wyd. UJ.
  • Epron, D., Dreyer, E. (1993). Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt.) Liebl., Quercus robur L.] in a natural stand. New Phytologist, 125: 381-389.
  • Falińska, K. (2012). Ekologia roślin [Plant ecology]. Warszawa: PWN.
  • Fritts, H.C., Swetnam, T.W. (1989). Dendroecology: a tool for evaluating variations in past and present forest environments. Advances in Ecological Research, 19: 111-188.
  • Fritts, H.C. (2001). Tree Rings and Climate. Caldwell, New Jersey: Blackburn Press. (Original work published 1923, London: Academic Press).
  • Glenz, C., Schlaepfer, R., Iorgulescu, I., Kienast, F. (2006). Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management, 235: 1-13.
  • Grissino-Mayer, H. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research, 57: 205-221.
  • Gurnell, A.M., Petts, G.E. (2011). Hydrology and Ecology of River Systems. In: Wildere, P. (Ed.). Treatise on Water Science, (pp. 237-269). Oxford: Academic Press.
  • Haines, A.T., Finlayson, B.L., McMahon, T.A. (1988). A global classification of river regimes. Applied Geography, 8: 255-272.
  • Holmes, R. L. (1983). Computer assisted quality control in tree ring dating and measurement. Tree-Ring Bulletin, 43: 69-78.
  • Junk, W.J.; Bayley, P.B., Sparks, R.E. (1989). The flood pulse concept in river-floodplain systems (pp.110-127). In: Dodge, D.P. (Ed.). Proc. of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci., 106.
  • Karpavičus, J., Adomas, V. (2006). Influence of environmental and climatic factors on the radial growth of European ash (Fraxinus excelsior L.). Ekologija 1:1-9.
  • Keyantash, J., Dracup, J. (2002). The quantification of drought: an evaluation of drought indices. Bulletin of the American Meteorological Society, 83: 1167-1180.
  • Klimo E., Hager H. (Eds.). ( 2001). The floodplain forests in Europe: current and perspectives. (European Forest Institute research report, 10). Leiden, The Netherlands: Koninklijke Brill NV.
  • Kozlowski, T., (1997). Responses of woody plants to flooding and salinity. Tree Physiol. Monogr., 1: 1-29.
  • Kozlowski, T.T., Pallardy, S.G. (1997). Growth Control in Woody Plants. San Diego: Academic Press.
  • Matisons, R., Inohosa, L.G., Laivinš, M. (2016). Pointer Years in Tree-Ring Width of European Ash with Different Crown Condition and Their Relationships with Climatic Factors in Latvia. Proc. of the Latvian Academy of Sciences. Sec. B, 70,3 (702): 116-123.
  • McKee, T.B., Doeskin, N.J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales (pp. 179-184). In: Proceedings of the 8th Conference on Applied Climatology. Boston, MA: American Meteorological Society.
  • Okoński, B., Koprowski, M. (2012). Zależność przyrostów promieniowych dębu szypułkowego i jesionu wyniosłego od opadów atmosferycznych na stanowisku położonym na terasie zalewowej doliny rzecznej Warty [Relationship of precipitation and radial increment of pedunculate oak and European ash from active river terrace of the Warta River]. SiMCEPL 1(30): 47-54.
  • Olden, J.D., Poff, N.L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19(2): 101-121.
  • Orwig, D.A., Abrams, M.D. (1997). Variation in radial growth responses to drought among species, site, and canopy strata. Trees - Struct. Funct., 11: 474-484.
  • Pallardy, S.G. (2008). Physiology of woody plants (3rd ed.). London, UK: Elsevier.
  • Palmer, W.C. (1965). Meteorological droughts (Weather Bureau Research Paper 45). Washington DC: U.S. Department of Commerce.
  • Parent, C., Capelli, N., Berger, A., Crevecoeur, M., Dat, J.F (2008). An overview of plant responses to soil waterlogging. Plant stress, 2: 20-27.
  • Parolin, P., Lucas, C., Piedade, M.T.F., Wittmann, F. (2010). Drought responses of extremely flood-tolerant trees of Amazonian floodplains. Annals of Botany, 105(1): 129- 139.
  • Pautasso, M., Aas, G., Queloz, V., Holdenrieder O. (2013) European ash (Fraxinus excelsior) dieback - A conservation biology challenge. Biological Conservation, 158: 37-49.
  • Peel, M.C., Finlayson, B.I., McMahon, T.A. (2007). Updated world map of the KöppenGeiger climate classification. Hydrology and Earth System Sciences, 11: 1633-1644.
  • R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical
  • Richards, K.S. (1982). Rivers, Form and Process in Alluvial Channels. London, New York: Blackburn Press.
  • San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.). (2016). European Atlas of Forest Tree Species. Luxembourg: Publications Office of the European Union. DOI:10.2788/4251
  • Schneider, C., Flörke, M., Geerling, G., Duel, H., Grygoruk, M., Okruszko, T. (2011). The future of European floodplain wetlands under a changing climate. J. Water Clim. Change, 2: 106-122.
  • Schneider, C., Laizé, C. L. R., Acreman, M. C., Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci., 17: 325-339.
  • Schweingruber, F.H. (1996). Tree Rings and Environment: Dendroecology. Bern, Stuttgart: Paul Haupt Verlag.
  • Siwkcki, R., Ufnalski, K. (1998). Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology, 28: 99-112.
  • Smith, M.D. (2011). The ecological role of climate extremes: current understanding and future prospects. J. Ecol., 99: 651-655.
  • Solon, J. (1999). Ekologiczno-krajobrazowe zróżnicowanie dolin dużych rzek [Ecological and landscape variability of river valleys] (8, pp. 179-200). In: Kołtuniak, J. (Ed.), Rzeki. Kultura-cywilizacja-historia. Katowice: Wydawnictwo Śląsk.
  • Speer, J.H. (2010). Fundamentals of Tree-Ring Research. Tucson: University of Arizona Press.
  • Thomas, F.M., Blank, R., Hartmann, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32: 277-307.
  • Tockner, K., Malard, F., Ward, J.V. (2000). An extension of the flood pulse concept. Hydrol. Process., 14: 2861-2883.
  • Tockner, K., Stanford, J. A. (2002). Riverine floodplains: Present state and future trends. Environmental Conservation, 29: 308-330.
  • Tockner, K., Uehlinger, U., Robinson, C. T. (2009). Rivers of Europe. London: Academic Press, Elsevier.
  • Tulik, M, Bijak, S (2016). Are climatic factors responsible for the process of oak decline in Poland? Dendrochronologia, 38: 18-25.
  • Vicente-Serrano, S.M., Begueía, S., López-Moreno, J.I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23(7): 1696-1718.
  • Vicente-Serrano, S.M., Beguera, S., Lorenzo-Lacruz, J., Camarero, J.J., Lpez-Moreno, J.I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., Sanchez-Lorenzo, A. (2012).
  • Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact., 16(10): 1-27.
  • Ważny, T. (2006). Dendrochronologia dębu [Dendrochronology of oak] (vol. 11, pp. 39- 69). In: Bugała W. (Ed.) Dęby. Quercus robur L., Quercus petraea Liebl. Nasze drzewa leśne. 11. Poznań-Kórnik: Polska Akademia Nauk. Instytut Dendrologii.
  • Wells, N., Goddard, S., Hayes, M.J. (2004). A self-calibrating Palmer drought severity index. J. Clim., 17 (12), 2335-2351.
  • Wigley, T.M.L., Briffa, K.R., Jones, P.D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23(2): 201-213.
  • Wilgat, T. (1991). Zmiany stosunków wodnych pod wpływem gospodarki [Humaninduced hydrological changes]. In: Sterkel, L. (Ed.). Geografia Polski. Środowisko przyrodnicze (pp.205-223). Warszawa: PWN.
  • Zang, C. Biondi, F. (2015). Treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography, 38(4): 431-436.
  • Zielski, A., Krąpiec, M. (2004). Dendrochronologia [Dendrochronology]. Warszawa: PWN
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.