Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr IV/1 | 1387--1400
Tytuł artykułu

Necessity of Disinfecting Water for Crop Irrigation

Treść / Zawartość
Warianty tytułu
Języki publikacji
The purpose of that article was to show the significance of water as the source of plant pathogens, and need of it effective disinfection methods in modern agriculture and horticulture. The increase in the cost of agricultural water use for crop irrigation and the necessity of using the same water several times, as well as the changing climatic conditions, including prolonged shortage of atmospheric precipitation and often extreme temperatures during the summer, necessitate the selection of an effective, easy to apply and economical method of disinfecting recirculated water to eliminate or minimize the occurrence of the most serious plant pathogens inhabiting various water sources. Among them, microorganisms of the genera Phytophthora, Pythium and Fusarium, and the species Rhizoctonia solani, Verticillium dahliae and some pathogenic bacteria pose the most serious threat. Some of them can be found in rivers, streams, ponds and water reservoirs, others are soil-borne pathogens that cause root and stem base rot of many plant species. The available literature describes at least a dozen methods of water disinfection, among them slow filtration through sand or lava filters, chlorination and heating. The literature data indicates that the use of sand filters is the most effective, safe and cheapest method of water disinfection.(original abstract)
Opis fizyczny
  • Research Institute of Horticulture, Skierniewice
  • Research Institute of Horticulture, Skierniewice
  • Research Institute of Horticulture, Skierniewice
  • Research Institute of Horticulture, Skierniewice
  • Research Institute of Horticulture, Skierniewice
  • Research Institute of Horticulture, Skierniewice
  • Amsing J.J., Runia W.T. (1995). Disinfestation of nematode-infested recirculation water by ultra-violet radiation. Mededelingen. Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Univ. Gent 60(3b), 1087-1092.
  • Baker K.F., Matkin O.A. (1978). Detection and control of pathogens in water. Ornamentals Northwest Archives, April-May 2(2), 12-13.
  • Bewley W.F., Buddin W. (1921). On the fungus flora of glasshouse water supplies in relation to plant disease. Ann. Appl. Biology 8(1), 10-19.
  • Bielenin A., Borecki Z. (1970). Zgnilizna pierścieniowa podstawy pnia drzew owocowych powodowana przez grzyb Phytophthora cactorum (Lep. et Cohn) Schroeter. Acta Agrobotanica 23 (2), 353-366.
  • Brand T., Wohanka W. (2001). Importance and characterization of the biological component in slow filters. Acta Hortic. 554, 313-321.
  • Brenner A., Shandalov S., Messalem R., Yakierevich A., Oron G., Rebhun M. (2000). Wastewater reclamation for agricultural reuse in Israel: trends and experimental results. Water, Air and Soil Pollution 123, 167-182.
  • Bush E.A., Hong C.X., Stromberg E.L. (2003). Fluctuations of Phytophtora and Pythium spp. in components of a recycling irrigation system. Plant Dis. 87(12), 1500-1506.
  • Calvo-Bado L.A., Morgan J.A., Sergeant M., Pettitt T.R., Whipps J.M. (2003a). Molecular characterization of Legionella populations present within slow sand filters used for fungal plant pathogen suppression in horticultural crops. Appl. Environ. Microbiol. 69(1), 533-541.
  • Calvo-Bado L.A., Pettitt T.R., Parsons N., Petch G.M., Morgan J.A.W., Whipps J.M. (2003b). Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Appl. Environ. Microbiol. 69(4), 2116- 2125.
  • Chikthimmah N., LaBorde L.F., Beelman R.B. (2005). Hydrogen peroxide and calcium chloride added to irrigation water as strategy to reduce bacterial populations and improve quality of fresh mushrooms. J. Food Sci. 70(6), 273-278.
  • Chin R. (2005). New water treatment systems for the nursery industry. Paper presented at the Nursery and garden industry conference proceedings, Fremantle, WA, Australia.
  • Clark G.A., Smajstrla A.G. (1992).
  • Treating irrigation systems with chlorine. Foliage Digest 15(6), 3-5.
  • Daughtrey M.L., Schippers P.A. (1980). Root death and associated problems. Acta Hortic. 98, 283-291.
  • Déniel F., Rey P., Chérif M., Guillou A., Tirilly Y. (2004). Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation. Can. J. Microbiol. 50(7), 499-508.
  • Ehret D.L., Alsanius B., Wohanka W., Menzies J.G., Utkhede R. (2001). Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21(4), 323-339.
  • Ehret D.L., Bogdanoff C., Utkhede R., Lévesque A., Menzies J.G., Ng K., Portree J. (1999). Disease control with slow filtration for greenhouse crops grown in recirculation. Final Report of the BC Greenhouse Veg. Res. Council, Project 96-15, 37 pp.
  • Hong C.X., Bush E.A., Richardson P.A., Stromberg E.L. (2001). The major deterrent to recycling irrigation water in nursery and greenhouse operations despite lack of alternatives for limiting nonpoint source pollution. Proc. Virginia Water Res. Symposium 1, 72-77.
  • Hong C., Cohn D., Kong P., Richardson P.A. (2002). Economic significance to nursery production of Phytophthora species present in irrigation water. SNA Res. Conf. 47, 237- 240.
  • Hong C.X., Moorman G.W. (2005). Plant pathogens in irrigation water: challenges and opportunities. Critic. Rev. Plant Sci. 24(3), 189-208.
  • Hong C.X., Richardson P.A., Kong P., Bush E.A. (2003). Efficacy of chlorine on multiple species of Phytophthora in recycled nursery irrigation water. Plant Dis. 87(10), 1183-1189.
  • Jamart G. (1998). The control of Phytophthora spp. in drainage water of Rhododendron in closed cultivation system. Verbondsnieuws 42, 30-32.
  • James E., Bodman K., Forsberg L., De Hayr R. (1995). Is irrigation water the culprit? Flower Link (June), 31-41.
  • Kong P., Hong C.X., Jeffers S.N., Richardson P.A. (2003). A species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology 93(7), 822-831.
  • Lane V. (2004). Audit and gap analysis of nursery waste-water research and communication. Horticulture Australia Final Report NY02024, 288 ss.
  • MacDonald J.D., Ali-Shtayeh M.S., Kabashima J., Stites J. (1994). Occurrence of Phytophthora species in recirculated nursery irrigation effluents. Plant Dis. 78(6), 607-611.
  • Mafia R.G., Alfenas A.C., Ferreira E.M., Machado P.S., Binoti D.H.B., Leite F.P., Souza F.L. (2008). Reuse of untreated irrigation water as a vehicle of inoculum of pathogens in eucalyptus clonal nursery. Trop. Plant Pathol. 33(2), 96-102.
  • McIntosh D.L. (1966). The occurrence of Phytophthora spp. in irrigation systems in British Columbia. Can. J. Bot. 44(12), 1591-1596.
  • McPherson G.M., Harriman M.R., Pattison D. (1995). The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection. Med. Fac. Landbouwkundige en Toegepaste Biologische Wetenschappen Univ. Gent 60(2b), 371-379.
  • Mebalds M., van der Linden A., Bankier M., Beardsell D. (1996). Using ultra violet radiation and chlorine dioxide to control fungal plant pathogens in water. The Nursery Papers Issue 5, 1-2.
  • Meszka B., Bielenin A. (2011). Agrest - nowym gospodarzem dla Phytophthora cactorum. Progress in Plant Protection 51(3), 1184-1187.
  • Milgroom M.G., Peever T.L. (2003). Population biology of plant pathogens: The synthesis of plant disease epidemiology and population genetics. Plant Dis. 87(6), 608-617.
  • Newman S.E. (2004). Disinfecting irrigation water for disease management. Paper presented at the 20th annual conference on pest management on ornamentals society of american florists, San Jose, California, 20-22
  • February, 1-10. Norman D.J., Yuen J.M.F., Resendiz R., Boswell J. (2003). Characterization of Erwinia populations from nursery retention ponds and lakes infecting ornamental plants in Florida. Plant Dis. 87(2), 193-196.
  • Orlikowski L.B., Ptaszek M. (2009). Rola chwastów ruderalnych i wody w przeżywalności i rozprzestrzenianiu Phytophthora cryptogea w środowisku. Progress in Plant Protection 49(3), 1085-1091.
  • Orlikowski L.B., Ptaszek M., Meszka B. (2015). Phytophthora cinnamomi - nowy patogen borówki wysokiej w Polsce. Progress In Plant Protection 55(4), 472-477.
  • Orlikowski L.B. Ptaszek M., Trzewik A., Orlikowska T. (2011a). Przydatność pułapek liściowych do detekcji Phytophthora spp. z wody. Sylwan 155(7), 493-499.
  • Orlikowski L.B., Ptaszek M., Trzewik A., Orlikowska T. (2011b). Occurrence of Phytophthora species in rivers, canals and water reservoirs in relation to its location, seasonal analysis and fungicide residues. Ecological Chemistry and Engineering A 18(11), 1551-1556.
  • Orlikowski L.B., Ptaszek M., Trzewik A., Wierzchowski M. (2012). Występowanie i ocena chorobotwórczości izolatów Phytophthora spp. uzyskanych z rzek i zbiornika wodnego. Sylwan 156(7), 533-541.
  • Ptaszek M. (2017). Byliny jako potencjalne źródło Phytophthora spp. dla roślin uprawnych. Praca doktorska wykonana w Instytucie Ogrodnictwa, Skierniewice, 248 ss.
  • Park K.W., Lee G.P., Kim M.S., Lee S.J., Seo M.W. (1998). Control of several fungi in the recirculating hydroponic system by modified slow sand filtration. Korean J. Hortic. Sci. Technol. 16(3), 347-349.
  • Pettitt T.R., Finlay A.R., Scott M.A., Davies E.M. (1998). Development of a system simulating commercial production conditions for assessing the potential spread of Phytophthora cryptogea root rot of hardy nursery stock in recirculating irrigation water. Ann. App. Biol. 132(1), 61-75.
  • Rompaey G.V. (2015). Het maandelijkse vakblad voor glastuinbouw. Onder Glas, 1-3
  • Runia W.T., Amsing J.J. (2001). Lethal temperatures of soilborne pathogens in recirculation water from closed cultivation systems. Acta Hortic. 554, 333-339.
  • Runia W.T., Boonstra S. (2004). UV-oxidation technology for disinfection of recirculation water in protected cultivation. Acta Hortic. 644, 549-555.
  • Shokes F.M., McCarter S.M. (1979). Occurrence, dissemination, and survival of plant pathogens in surface irrigation ponds in southern Georgia. Phytopathology 69(5), 510- 516.
  • Steadman J.R., Bay R.W., Hammer M.J. (1979). Plant pathogen contamination in reused irrigation waste water. Proc. Water Reuse Symposium 3, 2038-2045.
  • Steddom K. (2009). Detecting Phytophthora in recycled nursery irrigation water in East Texas. Phytopathology 99, S124.
  • Stewart-Wade S.M. (2011). Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Science 29(4), 267-297.
  • Themann K., Werres S., Diener H.A., Lüttmann R. (2002a). Comparison of different methods to detect Phytophthora spp. in recycling water from nurseries. J. Plant Pathol. 84(1), 41-51.
  • Themann K., Werres S., Lüttmann R., Diener H.A. (2002b). Observations of Phytophthora spp. in water recirculation systems in commercial hardy ornamental nursery stock. European J. Plant Pathol. 108(4), 337-343.
  • Thomson S.V., Allen R.M. (1974). Occurrence of Phytophthora species and other potential plant pathogens in recycled irrigation water. Plant Dis. Rep. 58(10): 945-949.
  • Ufer T., Posner M., Wessels H.P., Werres S. (2008a). Untersuchungen zur Eliminierung von Phytophthora spp. aus recyclingwasser in Baumschulen mit Hilfe von Filtrationsverfahren. Nachr. Dt. Pflanzenschutzd. 60(3), 45-61.
  • Ufer T., Werres S., Posner M., Wessels H.P. (2008b). Filtration to eliminate Phytophthora spp. from recirculating water systems in commercial nurseries. Plant Health Progress doi:10.1094/PHP-2008-0314-01-RS
  • Van Os E.A., van Kuik F.J., Runia W.T., van Buuren J. (1998). Prospects of slow sand filtration to eliminate pathogens from recirculating nutrient solutions. Acta Hort. 458, 377-382.
  • Vanninen I., Koskula H. (1998). Effect of hydrogen peroxide on agal growth, cucumber seedlings and the reproduction od shore flies (Scatella stagnalis) in rockwool. Crop Protection 17(6), 547-553
  • Werres S., Wagner S., Brand T., Kaminski K., Seipp D. (2007). Survival of Phytophthora ramorum in recirculating irrigation water and subsequent infection of Rhododendron and Viburnum. Plant Disease 91(8), 1034-1044.
  • Wohanka W., Helle M. (1996). Suitability of various filter media for slow filtration, p: 51-557. In: Proceedings of the Ninth International Congress on Soilless Culture, St Helier, Jersey, Channel Islands, 12-19 April 1996.
  • Wohanka W., Luedtke H., Ahlers H., Luebke M. (1999). Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Hortic. 481, 539-544.
  • Yiasoumi W. (2005). Water disinfecting techniques for plant pathogen control. Comb. Proc. Int. Plant Prapag. Soc. 55, 138-141.
  • Zheng Y., Dunets S. (2012). Slow sand filtration. Greenhouse and nursery water treatment information system. Univ. of Guelph, Ontario, Canada, 1-9.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.