PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr 1 (43) | 66--85
Tytuł artykułu

Evaluation of the On-line Commercial Service Quality Based on Association Rules

Treść / Zawartość
Warianty tytułu
Ocena jakości usług handlowych on-line na podstawie analizy reguł asocjacyjnych
Języki publikacji
EN
Abstrakty
Znane podejścia do oceny jakości usług uwzględniają różnorodne wyznaczniki jakości, co w konsekwencji umożliwia ocenę jakości usługi handlowej on-line w kilku płaszczyznach. Zastosowanie wielu atrybutów oceny jakości pozwala również na włączanie do jej przeprowadzenia specjalizowanych technik analizy. W pracy zaproponowano, aby do oceny jakości usług wykorzystać reguły asocjacyjne. Przeprowadzona analiza odkrytych reguł asocjacyjnych wskazała interesujące zależności i związki dotyczące poszczególnych cech usługi handlowej on-line. Na tej podstawie można wnioskować na temat ogólnej jakości usług, z drugiej strony odkryte związki i zależności można też wykorzystać do modelowania jakości usługi handlowej świadczonej w Internecie. Wnioski z analizy reguł asocjacyjnych mogą posłużyć zatem do kompleksowego doskonalenia jakości usługi handlowej świadczonej za pośrednictwem Internetu, co może się przełożyć na uzyskanie wyższej satysfakcji e-klientów.(abstrakt oryginalny)
EN
The existing approaches to the evaluation of on-line commercial services quality include various quality indicators. The application of multiple attributes for quality evaluation enables and involves specialized analysis techniques to carry it out. This article proposes to utilize association rules in the quality evaluation of the on-line services. The analysis carried out of the discovered association rules has provided interesting dependencies and relationships on the individual characteristics of the on-line commercial service. On the basis of such on analysis, conclusions can be made regarding the general quality of the on-line commercial services. The discovered dependencies and connections can be used in shaping online commercial service quality. Conclusions from the analysis of the association rules can therefore be used to improve the on-line commercial service quality comprehensively which can lead to the higher satisfaction of e-customers.(original abstract)
Rocznik
Numer
Strony
66--85
Opis fizyczny
Twórcy
autor
  • Akademia Morska w Gdyni
  • Akademia Morska w Gdyni
Bibliografia
  • Agrawal R., Imielinski T., Swami A., 1993, Mining Association Rules between Sets of Items in Large Databases, Proceedings of 1993 ACM SIGMOD International Conference on Management of Data, ACM Press, Washington D.C, pp. 207-2016.
  • Agrawal R., Srikant R., 1994, Fast Algorithms for Mining Association Rules, Proceedings of the 20th International Conference on Very Large Data Bases, Chile, Santiago, p. 478-499.
  • Ahmed S.R., 2004, Applications of data mining in retail business, Information Technology: Coding and Computing, (2), pp. 455-459.
  • Alhyari S., Alazab M., Venkatraman S., Alazab M., Alazab A., 2012, Six Sigma approach to improve quality in e-services: An empirical study in Jordan, International Journal of Electronic Government Research, 8(2), pp. 57-74.
  • Barnes S.J., Vidgen R.T., 2002, An integrative approach to the assessment of e-commerce quality, Journal of Electronic Commerce Research, 3(2), pp. 114-127.
  • Burgess L., 2004, A Conceptual Framework for Understanding and Measuring Perceived Service Quality in Net-Based Customer Support Systems, http://pdf.aminer.org/000/304/459/a_conceptual_framework_for_e_tailing_quality_and_its_evaluation.pdf., accessed: 5.02.2016.
  • Carmona C.J., Ramirez-Gallego S., Torres F., Bernal E., del Jesus, M.J., Garcia S., 2012, Web usage mining to improve the design of an e-commerce website: OrOliveSur.com, Expert Systems with Applications, 39(12), pp. 11243-11249.
  • Consorcium W3C, http://www.w3.org/, accessed: 5.05.2016.
  • Cristobal E., Flavian C., Guinaliu M., 2007, Perceived e-service quality: Measurement validity and effects on consumer satisfaction and web site loyalty, Managing Service Quality, 17(3), pp. 317-340.
  • Dobski P., 2012, Zarządzanie przez jakość w handlu detalicznym. Koncepcja i zastosowanie, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
  • Dolatabadi H.R., Pool J.K., 2013, Analysis electronic service quality through E-S-qual scale: The case study of nowshahr hotel, Research Journal of Applied Sciences Engineering and Technology 5(7), pp. 2321-2326.
  • Fu X., Budzik J., Hammond K.J., 2000, Mining navigation history for recommendation, Proceedings of the 2000 International Conference on Intelligent User Interfaces, ACM Press, New Orleans.
  • Goswami D.N., Chaturvedi A., Raghuvanshi C.S., 2010, An algorithm for frequent pattern mining based on apriori, International Journal on Computer Science and Engineering, 02(04), pp. 942-947.
  • Hemalatha M., 2012, Market basket analysis - a data mining application in Indian retailing, International Journal of Business Information Systems, 10(1), pp. 109-129.
  • Kamakura W.A., 2012, Sequential market basket analysis, Marketing Letter, 23(3), pp. 505-516.
  • Karimi-Majd A.M., Mahootchi M., 2015, A new data mining methodology for generating new service ideas, Information Systems and e-Business Management, 13(3), pp. 421-443.
  • Kohavi R., Provost F., 2001, Applications of data mining to electronic commerce, Data Mining and Knowledge Discovery, 5(1/2), pp. 5-10.
  • Kumar R., Verma R., 2012, Classification algorithms for data mining: A survey, International Journal of Innovations in Engineering and Technology, 1(2), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.305.2167&rep=rep1&type=pdf, accessed: 5.05.2016.
  • Kuo H.M., Chen Ch.W., 2011, Application of quality function deployment to improve the quality of Internet shopping website interface design, International Journal of Innovative, Computing, Information and Control 7(1), pp. 253-268.
  • Kuo Y.F., Chen J.Y., Deng, W.J., 2012, IPA-Kano model: A new tool for categorising and diagnosing service quality attributes, Total Quality Management & Business Excellence, 23(7-8), pp. 731-748.
  • Lee G.G., Lin H.F., 2005, Customer perceptions of e-service quality in online shopping, International Journal of Retail and Distribution Management, 33(2), pp. 161-176.
  • Liao S., Chen Y., Lin Y., 2011, Mining customer knowledge to implement online shopping and home delivery for hypermarkets, Expert Systems with Applications, 38(4), pp. 3982-3991.
  • Liao S., Chu P., Chen Y., Chang Ch., 2012, Mining customer knowledge for exploring online group buying behavior, Expert Systems with Applications, 39(3), pp. 3708-3716.
  • Market Basket Analysis: Identifying Products and Content That Go Well Together, http://snowplowanalytics.com/guides/recipes/catalog-analytics/market-basket-analysis-identifying-pr oducts-that-sell-well-together.html, accessed: 5.05.2016.
  • Merrilees B., Miller D., 2001, Superstore interactivity: A new self - service paradigm of retail service, International Journal of Retail and Distribution Management, 29(8), pp. 379-389.
  • Mobasher B., 2005, Web Usage Mining and Personalization, [in:] Singh M.P. (ed.), Practical Handbook of Internet Computing, Boca Raton, CRC Press.
  • Natarajan R., Shekar B., 2005, Interestingness of association rules in data mining: Issue relevant to e-commerce, Sadhana, 30(2-3), pp. 291-309.
  • Newman A.J., Cullen P., 2005, Retailing: Environment and Operations, Thomas Learning, London.
  • Olson D.L., Shi Y., 2006, Introduction to Business data Mining, McGraw-Hill/Irwin, Boston.
  • Parasuraman A., Zeithaml V., Malhotra A., 2005, E-S-QUAL. A Multiple-item scale for assessing electronic service quality, Journal of Service Research, 7(X), pp. 1-21.
  • Rajamaran A., Ulmann J.D., 2012, Mining of Massive Datasets, Cambridge University Press, New York.
  • Ramanathan R., 2010, E-commerce success criteria: Determining which criteria count most, Electronic Commerce Research, 10(2), pp. 191-208.
  • Santos J., 2003, E-service quality: A model of virtual service quality dimensions, Managing Service Quality, 13(3), pp. 233-246.
  • Schubert P., Selz D., 1997, Web assessment: A model for the evaluation and the assessment of successful electronic commerce applications, International Journal of Electronic Markets, 7(3), pp. 51-80.
  • Shmueli G., Patel N.R., Bruce P.C., 2010, Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner, John Wiley and Sons Inc. Hoboken, New Jersey.
  • Van Iwaarden J., Van der Wiele T., Ball L., Millen R., 2003, Applying SERVQUAL to websites: An exploratory study, International Journal of Quality & Reliability Management, 20(8), pp. 919-935.
  • Vijaylakshmi S., Mohan V., Suresh Raja S., 2010, Mining of users access behavior for frequent sequential pattern from web logs, International Journal of Database Management System, (2), pp. 31-45.
  • Waterworth A., Eldridge S., 2011, The development of an e-commerce failure mode and effects analysis, International Journal of Productivity and Quality Management, 8(3), pp. 247-264.
  • Yoo B., Donthu N., 2001, Developing a scale to measure perceived quality of an Internet shopping site (SITEQUAL), Quarterly Journal of Electronic Commerce, 2(1), pp. 31-46.
  • Zeitham V., Parasuraman A., Malhorta A., 2000, A Conceptual Framework for Understanding E-Service Quality: Implications for Future Research and Managerial Practice, Marketing Science Institute, Report 00-115.
  • Zhang J., Lin T., Ren L., 2010, Dynamic Fuzzy Evaluation for E-Commerce Service Quality Based on the SERVPERF, Proceedings of International Conference on E-Business and E-Government.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171492208

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.