PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | vol. 13, iss. 1 | 77--96
Tytuł artykułu

Description of World GDP Rate Changes by Using Discrete Dynamic Model

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rate of world GDP is changing periodically. A discrete dynamic model (DDM) describes this process. The model is based on the assumption that the global economy has certain "inertia". This allows us to describe the rate of change of global GDP in the subsequent year as a function of its change in the preceding year. This function can be approximated by using a finite number of terms of its Taylor series. A methodologically more rigorous approach is proposed for approximating the rate of world GDP change on non-overlapping time intervals. Radii of convergence were determined for approximating polynomials for these time ranges. Studies have shown the dependence of the shape of the radius of convergence from the nature of the convergence. DDM has a practical significance because it allows identifying the change in a character of economic dynamics without prior assumptions about the factors driving this trend. (original abstract)
Rocznik
Strony
77--96
Opis fizyczny
Twórcy
  • Ernst & Young, Russia
  • Financial University at RF Government, Russia
  • JSC QIWI, Russia
Bibliografia
  • Abramovitz M. (1961). The Nature and Significance of Kuznets Cycles. Economic Development and Cultural Change, 9/3, 225-248. https://doi.org/10.1086/449905
  • Akaev A.A. (2009). Sovremennyj finansovo-ekonomicheskiy krizis v svete teorii innovacionno-tehnologicheskogo razvitiya ekonomiki i upravleniya innovacionnym processom. In D. Halturina, A. Korotaev (Eds.). Sistemnyj monitoring. Globalnoe i regionalnoe razvitie (pp. 230-258). LIBROKOM Book House, Moscow. (in Russian).
  • Arnold A., Afraymovich V., Ilyashenko Y., & Shilnikov L. (1985). Teorija bifurkacij. Itogi nauki i tehniki VINITI AN SSSR, Moscow. (in Russian).
  • Arnold A., Vasilyev V., Goryunov V., & Lyashko O. (1988). Osobennosti. I. Lokal'naja i global'naja teorii. Itogi nauki i tehniki VINITI AN SSSR, Moscow (in Russian).
  • Arnold A., Vasilyev V., Goryunov V., & Lyashko O. (1989). Osobennosti. II. Klassifikacija i prilozenija.я. Itogi nauki i tehniki VINITI AN SSSR, Moscow. (in Russian).
  • Arnold V. (2009). Teorija katastrof (5th ed.). Editorial URSS, Moscow. (in Russian).
  • Arnold V. (2012). Geometričeskie metody v teorii obyknovennyh differencial'nyh uravnenij (4th ed.). MCMNO Publishing, Moskow. (in Russian).
  • Arrowsmith D., & Place C. (1982). Ordinary Differential Equations. A Qualitative Approach with Applications. Westfield College University of London, Chapman and Hall. London, New York.
  • Bezruchko B., Koronovskiy A., Trubetskov D., & Khramov A. (2010). Put' v sinergetiku (2nd ed.). LIBROKOM Book House, Moscow. (in Russian).
  • Chaldayeva L., & Kilyachkov A. (2012). Unificirovanniy podhod k opisaniyu prirody ekonomivheskih ciklov. Finansy i kredit, 45(525), 2-8. (in Russian).
  • Chaldayeva L., & Kilyachkov A. (2014). Model obratnoy svyazi i ee ispolzovanie dlja opisaniya dinamiki ekonomicheskogo razvitiya. Finansy i kredit, 31(607), 2-8. (in Russian).
  • Danilov Y. (2010). Lekcii po nelinejnoj dinamike (3rd ed.). LIBROKOM Book House, Moscow. (in Russian).
  • Forrester J. (1977). New Perspectives on Economic Growth. In D. Meadows (Eds.), Alternatives to Growth - A Search for Sustainable Futures (pp. 107-121). Cambridge, MA: Ballinger.
  • Haken H. (1978). Synergetics. Introduction and Advanced Topics. Part I. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology (2d ed.). Springer-Verlag, Berlin-Heidelberg-New York. https://doi.org/10.1007/978-3-642-96469-5
  • Haken H. (2004). Synergetics. Introduction and Advanced Topics. Part II. Advanced Topics. Instability Hierarchies of Self-Organizing Systems and Devices. Springer-Verlag, Berlin-Heidelberg-New York. https://doi.org/10.1007/978-3-662-10184-1
  • Hassard B., Kazarinoff N., & Wan Y. (1981). Theory and Applicatons of Hopf Bifurcation. Cambridge University Press, Cambridge, London-New York-New Rochelle-Melbourne-Sydney.
  • Juglar C. (1862). Des Crises commerciales et leur retour periodique en France, en Angleterre, et aux Etats-Unis. Guillaumin, Paris.
  • Kilyachkov A., & Chaldaeva L. (2013). Bifurcational Model of Economic Cycles. North American Academic Journals, Economic Papers and Notes, 13/4, 13-20.
  • Kilyachkov A., Chaldaeva L., & Kilyachkov N. (2015). Opisanie izmeneniy mirovogo VVP na korotkih vremennyh intervalah s pomoshyu diskretnoy dinamicheskoj modeli. Finansovaja analitika: problemy i rešenija, 44(278), 17-31. (in Russian).
  • Kitchin J. (1923). Cycles and Trends in Economic Factors. Review of Economics and Statistics, 5/1, 10-16. https://doi.org/10.2307/1927031
  • Kondratieff N. (1922). Mirovoe hozjajstvo i ego konyunkturi vo vremja i posle voyny. Oblastnoe otdelenie Gosudarstvennogo izdatelstva, Vologda. (in Russian).
  • Kondratieff N. (1984). The Long Wave Cycle. Richardson & Snyder, New York.
  • Kondratieff N., Yakovets Y., & Abalkin L. (2002). Bolshiie cikly konyunkturi i teorija predvidenija. Izbrannye trudy. Èkonomika, Moscow. (in Russian).
  • Korn G., & Korn T. (1968). Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review (2d ed.). McGraw-Hill Book Company, New York, San Francisco, Toronto, London, Sidney.
  • Korotayev A., & Tsirel S. (2010a). Kondratevskie volny v mirovoy ekonomicheskoy dinamike. In D. Khalturin, A. Korotayev. Sistemnyj monitoring. Globalnoe i regionalnoe razvitie (pp.189-229). LIBROKOM Book House, Moscow. (in Russian).
  • Korotayev A., & Tsirel S. (2010b). A Spectral Analysis of World GDP Dynamics: Kondratieff Waves, Kuznets Swings, Juglar and Kitchin Cycles in Global Economic Development, and the 2008-2009 Economic Crisis. Structure and Dynamics: eJournal of Anthropological and Related Sciences 4/1, 1-55.
  • Kuznets S. (1930). Secular Movements in Production and Prices. Their Nature and their Bearing upon Cyclical Fluctuations. Houghton Mifflin, Boston.
  • Magnitsky N., & Sidorov S. (2016). Novye metody haoticheskoj dinamiki. Editorial URSS, Moscow.
  • Malinetsky G. (2009). Matematicheskie osnovy sinergetiki. Haos, struktury, vychislitelnyj eksperiment (6th ed.). LIBROKOM Book House, Moscow. (in Russian).
  • Nemytsky V., & Stepanov V. (2004). Kachestvennaja teorija differencialnyh uravneniy (3rd ed.). Editorial URSS, Moscow. (in Russian).
  • Sekovanov V. (2013). Elementy teorii fraktalnyh mnozestv (5th ed.). LIBROKOM Book House, Moscow. (in Russian).
  • Trubetskov D. (2010). Vvedenie v sinergetiku. Haos i struktury (3rd ed.). LIBROKOM Book House, Moscow. (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171492524

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.