Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | nr 18 | 14--22
Tytuł artykułu

Treatment of Sewage Sludge for Fuel Cells Supply

Treść / Zawartość
Warianty tytułu
Języki publikacji
Sewage sludge represents the main fraction of municipal waste generated in Poland. Since its production increases rapidly, an effective method for its decomposition needs to be found. Due to conventional energy sources depletion, new solutions allowing for renewable energy production are recommended. One of the methods for conversion of sewage sludge into green energy is application of the fuel cells feeding with gaseous residuals of sewage sludge, obtained as a result of different thermal or biological processes. Such a system can be easily modified and adjusted to the individual needs, which makes this solution very promising. The article analyses biological and thermal processes that can be used in converting sewage sludge into a useful input for various types of fuel cells. (original abstract)
Słowa kluczowe
Opis fizyczny
  • Research and Innovation Centre Pro - Akademia
  • I. Zsirai, Sewage sludge as renewable energy, J. Residuals Sci. Tech. 8(4) (2011) 165-179.
  • Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste.
  • K. Środa, A. Kijo-Kleczkowska, H. Otwinowski, Termiczne unieszkodliwianie osadów ściekowych, Inżynieria Ekologiczna 28 (2012) 67-81.
  • R.P. O'Hayre, S.-W. Cha, W.G. Colella, F.B. Prinz, Fuel Cell Fundamentals. 2nd edn. John Wiley & Sons, INC, Hoboken, New York, 2009.
  • J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. John Wiley & Sons Ltd., West Sussex, 2003. England.
  • B.C.H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001) 345-352.
  • S. Werle, R.K. Wilk, A review for methods for the thermal utilization of sewage sludge: a Polish perspective, Renew. Energ. 35 (2010) 1914-1919.
  • D.T. Furness, L.A. Hoggett, S.J. Judd, Thermochemical treatment of sewage sludge, Water Environ. J. 14 (2000) 57-65.
  • P. Mathieu, R. Dubuisson, Performance analysis of biomass gasifier, Energ. Convers. Manage. 43 (2002) 1291-1299.
  • N. Nipattummakul, I.I. Ahmed, S. Kerdsuwan, A.K. Gupta, Hydrogen and syngas production from sewage sludge via steam gasification, Int. J. Hydrogen Energ. 35(21) (2010) 11738-11745.
  • J.M. de Andrés, A. Narros, M.E. Rodríguez, Behavior of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge, Fuel 90(2) (2011) 521-527.
  • T.-Y. Mun, M.-H. Cho, J.-S. Kim, Air gasification of dried sewage sludge in a two stage gasifier. Part 3: Application of olivine as a bed material and nickel coated distributor for the production of a clean hydrogen - rich producer gas. Int. J. Hydrogen Energ. 39 (2014) 5634-5643.
  • E. Roche, J.M. de Andrés, A. Narros, M.E. Rodríguez, Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition. Fuel. 115 (2014) 54-61.
  • C. He, C.-L. Chen, A. Giannis, Y. Yang, J.-Y. Wang, Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review. Renew. Sust. Energ. Rev. 39 (2014) 1127-1142.
  • L.H. Zhang, C.B. Xu, P. Champagne, Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour. Technol. 101 (2010) 2713-2721.
  • H. Schmieder, J. Abeln, N. Boukis, E. Dinjus, A. Kruse, M. Kluth, G. Petrich, E. Sadri, M. Schacht, Hydrothermal gasification of biomass and organic wastes. J. Supercrit. Fluids. 17 (2000) 145-153.
  • X. Xu, M.J. Antal, Gasification of sewage sludge and other biomass for hydr ogen production in supercritical water. Environ. Prog. 17 (1998) 215-220.
  • J.A. Onwudili, P. Radhakrishnan, P.T. Williams, Application of hydrothermal oxidation and alkaline hydrothermal gasification for the treatment of sewage sludge and pharmaceutical was tewaters. Environ. Technol. 34 (2013) 529-537.
  • H. Liu, H. Hu, G. Luo, A. Li, M. Xu, H. Yao, Enhancemet of hydrogen production in steam gasification of sewage sludge by reusing the calcium in lime-conditioned sludge. Int. J. Hydrogen Energ. 38 (2013) 1332-1341.
  • Y.N. Chun, S.C. Kim, K. Yoshikawa, Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier, Appl. Energ. 88 (2011) 1105-1112.
  • U. Bellman, Y.Y. Kummer, W. Kaminsky, Fluidized bed pyrolysis of sewage sludge, w: Ferrero, Maniatis, Buekens and Bridgwater (Eds.), Pyrolysis and Gasification, Elsevier, London, 1989, pp. 190.
  • J.A. Conesa, A. Marcilla, R. Moral, J. Moreno-Caselles, A. Perez-Espinosa, Evolution of gases in the primary pyrolysis of different sewage sludges, Ther mochimi. Acta 313(1) (1998) 63-73.
  • J. Alvarez, M. Amutio, G. Lopez, I. Barbarias, J. Bilbao, M. Olazar, Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chem. Eng. J. 273 (2015) 173-183.
  • H. Fan, H. Zhou, J. Wang, Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed - bed reactor. Energ. Convers. Manage. 88 (2014) 1151-1158.
  • R. Han, Ch. Zhao, J. Liu, A. Chen, H. Wang, Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional dried sewage sludge. Bioresour. Technol. 198 (2015) 276-282.
  • G. Freitag, Thermoselect technology to recover energy and raw materials from waste, Fuel and Energy Abstracts, 37 (1996) 284.
  • L. Shen, D.-K. Zhang, An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized - bed, Fuel 82 (2003) 465-472.
  • J.A. Menéndez, A. Domínguez, M. Inguanzo, J.J. Pis, Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue, J. Anal. Appl. Pyrol. 74 (2005) 406-412.
  • A. Sattar, G.A. Leeke, A. Hornung, J. Wood, Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass. Bioenerg. 69 (2014) 276-286.
  • K. Jayaraman, I. Gökalp, Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energ. Convers. Manage. 89 (2015) 83-91.
  • Y. -C. Song, S.-J. Kwon, J.-H. Woo, Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge, Water Res. 38 (2004) 1653-1662.
  • L. Appels, J. Baeyens, J. Degrève, R. Dewil, Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energ. Combust. 34 (2008) 755-781.
  • P. Sosnowski, A. Wieczorek, S. Ledakowicz, Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes, Adv. Environ. Res. 7 (2003) 609-616.
  • V. Dubrovskis, I. Plume, V. Kotelenecs, E. Zabarovskis, Anaerobic digestion of sewage sludge, Engineering for Rural Development, Proceedings of the 9th International Scientific Conference, Jelgava, Latvia, 27-28 May, 2010, pp. 216-219.
  • X. Liao, H. Li, Y. Zhang, C. Liu, Q. Chen, Accelerated high-solids anaerobic digestion of sewage sludge using low - temperature thermal pretreatment. Int. Biodeter. Biodegr. 106 (2016) 141-149.
  • L. Nghiem, T. T. Nguyen, P. Manassa, S.K. Fitzgerald, M. Dawson, S. Vierboom, Co-digestion of sewage sludge and crude glycerol for on -demand bio gas production, Int. Biodeter. Biodegr. 95, Part A, (2014) 160-166.
  • M.S. Fountoulakis, I. Petousi, T. Manios, Co-digestion with sewage sludge with glycerol to boost biogas production, Waste Manage. 30(10) (2010) 1849-1853.
  • G. Silvestre, B. Fernández, A.Bonmatí, Addition of crude glycerin as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co- digestion. Bioresour. Technol. 193 (2015) 377-385.
  • M.P. Caporgno, R. Trobajo, N. Caiola, C. Ibáñez, A. Fabregat, C. Bengoa, Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renew. Energ. 75 (2015) 374-380.
  • N. de Arespacochaga, C. Valderrama, C. Peregrina, C. Mesa, L. Bouchy, J.L. Cortina, Evaluation of the pilot-scale sewage biogas powered 2.8 kWe Solid Oxide Fuel Cell: Assessment of heat-to-power ratio and influence of oxygen content. J. Power. Sources. 300 (2015) 325-335.
  • V. Verda, A. Sciacovelli, Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester. Energy. 47 (2012) 150-157.
  • N. de Arespacochaga, C. Valderrama, C. Peregrina, A. Hornero, L. Bouchy, J.L. Cortina, On-site cogeneration with sewage biogas via high-temperature fuel cells: Benchmarking against other options based on industrial-scale data. Fuel. Process. Technol. 138 (2015) 654-662.
  • X. Chen, Y. Sun, Z.L. Xiu, X. Li, D. Zhang, Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energ. 31 (2006) 539-549.
  • G.D. Saratale, S.-D. Chen, Y.-C. Lo, R.G. Saratale, J.-S. Chang, Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation -a review, J. Sci. Ind. Res. 67 (2008) 962-979.
  • C.C. Wang, C.W. Chang, C.P. Chu, D.J. Lee, B.V. Chang, C.S. Liao, Producing hydrogen from wastewater sludge by Clostridium bifermentans, J. Biotechnol. 102 (2003) 83-92.
  • C.C. Wang, C.W. Chang, C.P. Chu, D.J. Lee, B.V. Chang, C.S. Liao, Hydrogen production from wastewater sludge using a Clostridium strain, J. Environ. Sci. Heal. A. 38 (2003) 1867-1875.
  • M. Cai, J. Liu, Y. Wei, Enhanced biohydrogen production from sewage sludge with alkaline pretreatment, Environ. Sci. Technol. 38 (2004) 3195-3202.
  • B. Xiao, J. Liu, Biological hydrogen production from sterilized sewage sludge by anaerobic self - fermentation, J. Hazard. Mater. 168 (2009) 163-167.
  • H. Zhu, W. Parker, R. Basnar, A. Proracki, P. Falletta, M. Béland, P. Seto, Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges, Int. J. Hydrogen Energ. 33 (2008) 3651-3659.
  • S.H. Kim, S.K. Han, H.S. Shin, Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge, Int. J. Hydrogen Energ. 29 (2004) 1607-1616.
  • V.K. Tyagi, R.A. Campoy, C.-J. Álvarez-Gallego, L.I. Romero García, Enhancement n hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge-Optimization of treatment conditions. Bioresour. Technol. 164 (2014) 408-415.
  • M. Kim, Ch. Liu, J.-W. Noh, Y. Yang, S. Oh, K. Shimizu, D.-Y. Lee, Z. Zhang, Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions., Int. J.Hydrogen Energ. 38 (2013) 8648-8656.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.