PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr 4 | 110--124
Tytuł artykułu

The Role of Food Crisis and Trade Costs in the Hungarian Maize Exports

Warianty tytułu
Rola kryzysu żywnościowego i kosztów handlowych w eksporcie węgierskiej kukurydzy
Języki publikacji
EN
Abstrakty
Kukurydza jest jednym z najważniejszych produktów eksportu rolnego na Węgrzech. W artykule omówiono rolę kryzysu gospodarczego i kosztów handlowych w kształtowaniu się wzoru węgierskiego eksportu kukurydzy w latach 1996-2015. Autorzy zastosowali standardowy model grawitacyjny, aby wyjaśnić czynniki wzrostu węgierskiego eksportu kukurydzy na rynku światowym. Uzyskane wyniki sugerują, że po stronie popytu zarówno wielkość rynku importerów, jak i ich przychody mają pozytywny i znaczący wpływ na eksport węgierskiej kukurydzy. Odległość i kryzys mają negatywny wpływ, natomiast członkostwo w UE ma pozytywny wpływ na eksport węgierskiej kukurydzy.(abstrakt oryginalny)
EN
Maize is one of the most important agricultural export products in Hungary. The paper investigates the role of economic crisis and trade costs on the pattern of Hungarian maize exports over the period from 1996 to 2015. The authors employ standard gravity model to explain the drivers of Hungarian maize exports at the world market. The results suggest that on the demand side both importers' market size and the importers' income have positive and significant impacts on Hungarian maize exports. The distance and crisis have negative impacts, whilst the EU membership positively influenced Hungarian maize exports.(original abstract)
Rocznik
Numer
Strony
110--124
Opis fizyczny
Twórcy
autor
  • Kaposvár University Hungary
  • Hungarian Academy of Sciences Budapest, Hungary
Bibliografia
  • 1. Akhter, S. (2017). Market integration between surplus and deficit rice markets during global food crisis period. Australian Journal of Agricultural and Resource Economics, no. 61(1), pp. 172-188.
  • 2. Anderson, J.E. (1979). A theoretical foundation for the gravity equation. American Economic Review, no. 69, pp. 106-116.
  • 3. Anderson, J.E., Marcouiller, D. (2002). Insecurity and the Pattern of Trade: An Empirical Investigation. Review of Economics and Statistics, no. 84(2), pp. 342-352.
  • 4. Anderson, J.E., van Wincoop, E. (2003). Gravity with gravitas: a solution to the border problem. American Economic Review, no. 1, pp. 170-92.
  • 5. Bacchetta, M., Beverelli, C., Cadot, O., Fugazza, M., Grether, J.M., Helble, M., Nicita, A., Piermartini, R. (2012). A practical guide to trade policy analysis. Switzerland: World Trade Organisation and United Nation. June 2012, p. 106.
  • 6. Bojnec, Š., Fertő, I. (2010). Internet and international food industry trade. Industrial Management & Data Systems, no. 110(5), pp. 744-761.
  • 7. CEPII ( 2017). Distances. In: CEPII (ed.). Retrieved from: http://www.cepii.fr/anglaisgraph/ bdd/distances.html.
  • 8. Eaton, J., Kortum, S. (2002). Technology, geography, and trade. Econometrica, no. 70(5), pp. 1741-1779.
  • 9. Feenstra, R. (2004). Advanced International Trade. Princeton University Press.
  • 10. Francois, J., Manchin, M. (2013). Institutions, infrastructure, and trade. World Development, no. 46, pp. 165-175.
  • 11. Frankel, J.A., Rose, A. (2002). An estimate of the effect of common currencies on trade and income. Quarterly Journal of Economics, no. 117(2), pp. 437-466.
  • 12. Ghazalian, P.L. (2015). On the magnitude of the geographic distance effect on primary agricultural and processed food trade. Agribusiness, no. 31(2), pp. 148-170.
  • 13. Ghazalian, P.L., Larue, B., Gervais, J-P. (2011). Assessing the implication of regional preferential market access for meat commodities. Agribusiness, no. 27(3), pp. 292-310.
  • 14. Giordani, P.E., Rocha, N., Ruta, M. (2016). Food prices and the multiplier effect of trade policy. Journal of International Economics, no. 101(1), pp. 102-122.
  • 15. Gutierrez, L. (2012). Speculative bubbles in agricultural commodity markets. European Review of Agricultural Economics, no. 40(2), pp. 217-238.
  • 16. Haq, Z.U., Meilke, K., Cranfield, J. (2013). Selection bias in a gravity model of agrifood trade. European Review of Agricultural Economics, no. 40(2), pp. 331-360.
  • 17. Head, K., Mayer, T. (2013). Gravity Equations: Workhorse, Toolkit, and Cookbook. CEPII Working Paper (Centre d'études prospectives et d'informations internationales). No. 2013-27 September.
  • 18. Head, K., Mayer, T., Ries, J. (2010). The erosion of colonial trade linkages after independence. Journal of International Economics, no. 81(1), pp. 1-14.
  • 19. Headey, D. (2011). Rethinking the global food crisis: The role of trade shocks. Food Policy, no. 36(2), pp. 136-146.
  • 20. Headey, D., Fan, S. (2008). Anatomy of a crisis: the causes and consequences of surging food prices. Agricultural Economics, no. 39, pp. 375-391.
  • 21. Heckmann, J.J. (1979). Sample selection bias as a specification error. Econometrica, no. 47(1), pp. 153-161.
  • 22. Helpman, E., Melitz, M., Rubinstein, Y. (2008). Estimating trade flows: trading partners and trading volumes. Quarterly Journal of Economics, no. 123(2), pp. 441-487.
  • 23. Jayasinghe, S., Beghin, J.C., Moschini, G. (2010). Determinants of world demand for US corn seeds: the role of trade costs. American Journal of Agricultural Economics, no. 92(4), pp. 999-1010.
  • 24. Koo, W.W., Karemera, D. (1991). Determinants of world wheat trade flows and policy analysis. Canadian Journal of Agricultural Economics, no. 39, pp. 439-455.
  • 25. Koo, W.W., Kennedy, P.L., Skripnitchenko, A. (2006). Regional preferential trade agreements: Trade creation and diversion effects. Review of Agricultural Economics, no. 28, pp. 408-415.
  • 26. KSH (2016). A mezőgazdaság szerepe a nemzetgazdaságban, 2015. Retrieved from: http:// www.ksh.hu/docs/hun/xftp/idoszaki/mezo/mezoszerepe15.pdf.
  • 27. KSH (2017). A fontosabb szántóföldi növények betakarított területe, össze termése és termésátlaga (1990-). Retrieved from: http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/ i_omn007a.html.
  • 28. Linders, G-J.M., De Groot, H.L.F. (2006). Estimation of the Gravity Equation in the Presence of Zero Flows. Amsterdam: Tinbergen Institute Discussion Paper, TI 2006-072/3.
  • 29. Martin, W., Pham, C. (2015). Estimating the gravity model when zero trade flows are frequent and economically determined (No. 7308). The World Bank.
  • 30. Mitchell, D. (2008). A Note on Rising Food Prices. Policy Research Working Paper No. 4682, The World Bank, Washington, DC.
  • 31. Rose, A.K. (2004). Do We Really Know That the WTO Increases Trade? American Economic Review, no. 94(1), pp. 98-114.
  • 32. Santos Silva, J., Tenreyro, S. (2006). The log of gravity. Review of Economics and Statistics, no. 88(4), pp. 641-658.
  • 33. Santos Silva, J., Tenreyro, S. (2011). Further simulation evidence on the performance of the Poisson pseudo-maximum likelihood estimator. Economics Letters, no. 112(2) pp. 220-222.
  • 34. Serrano, R., Pinilla, V. (2012). The long-run decline in the share of agricultural and food products in international trade: a gravity equation approach to its causes. Applied Economics, no. 44, pp. 4199-4210.
  • 35. Serrano, R., Pinilla, V. (2014). Changes in the structure of world trade in the agri-food industry: the impact of the home market effect and regional liberalization from a long-term perspective, 1963-2010. Agribusiness, no. 30(2), pp. 165-183.
  • 36. Serrano, R., García-Casarejos, N., Gil-Pareja, S., Llorca-Vivero, R., Pinilla, V. (2015). The Internationalisation of the Spanish Food Industry, 1970-2012: The Home Market Effect and European Market Integration. Spanish Journal of Agricultural Research, no. 13(3). pp. 1-13.
  • 37. Tadasse, G., Algieri, B., Kalkuhl, M., von Braun, J. (2016). Drivers and triggers of international food price spikes and volatility. In: Food Price Volatility and Its Implications for Food Security and Policy (pp. 59-82). Springer International Publishing.
  • 38. UNSD (2017). Commodity Trade Database (COMTRADE). United Nations Statistical Division, New York.
  • 39. World Bank (2017a). Commodity Trade Database (COMTRADE), Available through World Bank's World Integrated Trade Solution (WITS) software at: http://www.wits.worldbank.org, Washington D.C.
  • 40. World Bank (2017b). World Development Indicators. Retrieved from: http://www.wits.worldbank.org, Washington, D.C.
  • 41. World Trade Organization (WTO) (2017). Regional trade agreements. Retrieved from: https://www.wto.org/english/tratop_e/region_e/region_e.htm. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171493592

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.