PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr 3 | 597--611
Tytuł artykułu

Application of the Biochar-Based Technologies as the Way of Realization of the Sustainable Development Strategy

Warianty tytułu
Zastosowanie technologii bazujących na wykorzystaniu biowęgla drogą do realizacji założeń zrównoważonego rozwoju
Języki publikacji
EN
Abstrakty
EN
The technologies of thermal processing of biomass, biowaste or sewage sludge into biochar as well as its potential use in the industry, power industry, housebuilding industry, agriculture or environmental protection attract growing attention. The multi-faceted, unique properties of biochar make it particularly attractive from the point of view of the achievement of sustainable development goals according to which the needs of the present generation should be satisfied in such a way so as not to harm the environment and in such a way that the future generations could use the same natural environment as we do. The EU policy focusing on the implementation of the principles of sustainable development emphasises the need to reduce the exploitation of natural resources, to use effective technologies processing waste and to develop new biodegradable and environmentally friendly products. Due to the wide range of biochar applications in many economy sectors, the ways of production, ensuring the reduction of waste generation, and its economic attractiveness, this product meets the expectations of the sustainable development policy. The aim of this paper is review the biochar-based technologies and the concepts of its application, and description of the disadvantages and advantages each of them. (original abstract)
Technologie termicznego przetwarzania biomasy, bioodpadów czy osadów ściekowych na biowęgiel, podobnie jak jego potencjalne wykorzystanie w przemyśle, energetyce, budownictwie, rolnictwie czy ochronie środowiska budzą coraz większe zainteresowanie. Wieloaspektowe, cenne właściwości biowęgla powodują, że jest on szczególnie atrakcyjnym produktem z punktu widzenia realizacji założeń zrównoważonego rozwoju, w myśl których należy w taki sposób zaspokajać potrzeby obecnego pokolenia by nie szkodzić środowisku oraz aby przyszłe pokolenia mogły korzystać z takiego środowiska naturalnego jakim dysponujemy obecnie. Polityka UE, skupiająca się na realizacji założeń zrównoważonego rozwoju podkreśla konieczność ograniczenia wydobycia surowców naturalnych, stosowania efektywnych technologii przetwarzających odpady oraz opracowania nowych produktów biodegradowalnych, przyjaznych dla środowiska. Zarówno szerokie możliwości wykorzystania biowęgla w wielu gałęziach gospodarki, sposób uzyskania zapewniający redukcję generowanych odpadów, jak i jego atrakcyjność ekonomiczna powodują, że jest to produkt spełniający oczekiwania polityki zrównoważonego rozwoju. Celem pracy jest dokonanie przeglądu technologii opierających się na wykorzystaniu biowęgla oraz koncepcji jego zastosowania wraz z opisem wad oraz zalet każdej z nich. (abstrakt oryginalny)
Rocznik
Numer
Strony
597--611
Opis fizyczny
Twórcy
  • Opole University of Technology, Poland
  • Opole University of Technology, Poland
Bibliografia
  • Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203: 183-191.
  • Angına, D.; Köse, T.E.; Selengil, U. (2013). Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Applied Surface Science 280: 705-710.
  • Athappan, A.; Sattler, M.L.; Sethupathi, S. (2015). Selective catalytic reduction of nitric oxide over cerium-doped activated carbons. Journal of Environmental Chemical Engineering 3(4): 2502-2513.
  • Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1-18.
  • Bartuś, T. (2003). Parametry chemiczno - technologiczne i oparte na nich klasyfikacje węgli brunatnych. Available at: http://home.agh.edu.pl/~bartus/efekty_docs/parametry_wegla_dzia alnosc_statutowa_2003-2004.doc Accessed 4 April 2017.
  • Borowiecki, T.; Kijeński J.; Machnikowski, J.; Ściążko, M. (2008). Czysta energia, produkty chemiczne i paliwa z węgla - ocena potencjału rozwojowego. Zabrze: IChPW.
  • Bubel, F.; Rogosz, B. (2014). Biowęgiel - Właściwości i zastosowanie. Available at: http://globenergia.pl/biowegielwlasciwosci- i-zastosowanie. Accessed 4 April 2017.
  • Dabioch, M.; Skorek, R.; Kita, A.; Janoska, P.; Pytlakowska, K.; Zerzucha, P.; Sitko, R. (2013). A study on adsorption of metals by activated carbon in a large-scale (municipal) process of surface water purification. Central European Journal of Chemistry 11(5): 742-753.
  • Gao, J.F.B.; Zimmerman, A.R.; Ro, K.S.; Chen, J. (2016). Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. Royal Society of Chemistry 6: 24906-24911.
  • Gładki, J. (2017). Biowęgiel szansą dla zrównoważonego rozwoju. Sędziszów: Oficyna Poligraficzna Apla Sp.J.
  • Graber, E.R.;, Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337: 481-496.
  • Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Pullammanappallil, P.; Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology 110: 50-56.
  • Jiang, M.; Ning, P.; Wang, Z.H.; Bai, Y.W.; Chen W.;, Zhang W.; Wang R.B. (2012). Preparation and adsorption property of modified activated carbon for purification of HCN in closed carbide furnace tail gas. Advanced Materials Research 476-478: 1862-1866.
  • Kim, D.; Yoshikawa, K..; Park, K-Y. (2015). Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8: 14040-14048.
  • Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. (2016). Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils. Environmental Science and Pollution Research 23(11): 11058-11068.
  • Laird D. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100: 178-181.
  • Lam, S.S.; Liew, R.K.; Wong, Y.M.; Azwar, E.; Jusoh. A.; Wahi, R. (2016). Activated carbon for catalyst support from microwave pyrolysis of orange peel. Waste and Biomass Valorization: 1-11.
  • Lehman, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment 5(7): 381-387.
  • Lehmann, J.; Rillig, M.; Thies, J.; Masiello, C.; Hockaday, W.; Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology and Biochemistry 43(9): 1812-1836.
  • Lima, I.M.; Boateng, A.A.; Klasson, K.T. (2010). Physicochemical and adsorptive propertiesof fast-pyrolysis biochars and their steam activated counterparts. Chemical Technology and Biotechnology 85(11): 1515-1521.
  • Liu, W.; Wang, X.; Ning, P.; Chen, W.; Qiu, J.; Zhou, Y. (2013). Adsorptive purification of C4H4S in industrial waste gas by Cu-based modified activated carbon. Journal of Central South University (Science and Technology) 44(5): 2165-2172.
  • Lompe, K.M.; Menard D.; Barbeau, B. (2016). Performance of biological magnetic powdered activated carbon for drinking water purification. Water Research 96: 42-51.
  • Lu, Q.; Ye, X.; Zhang, Z.; Cui, M.S.; Guo, H.; Qi, W.; Dong, Ch.; Yang, Y. (2016). Catalytic fast pyrolysis of bagasse using activated carbon catalyst to selectively produce 4-ethyl phenol. Energy and Fuels 30(12): 10618-10626.
  • Mahmoud, D.K.; Salleh, M.A.M.; Karim, W.A.W.A.; Idris, A.; Abidin, Z.Z. (2012). Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal 181-182: 449-457.
  • Malińska, K. (2014). Biowęgiel dla środowiska i nie tylko. Chemia Przemysłowa 3: 36-39.
  • Mazlan, M.A.F.; Uemura, Y.; Osman, N.B.; Yusup, S. (2015). Characterizations of Bio-char from Fast Pyrolysis of Meranti Wood Sawdust. Journal of Physics: Conference Series 622: 1-7.
  • McLaughlin, H.; Pyle, K. (2016). Practical applications of biochar in the landscape. Available at: http://www.ecolandscaping.org/04/biochar/practical-applications-of-biochar-in-the-landscape/. Accessed 7 April 2017.
  • Medyńska-Juraszek, A. (2016). Biowęgiel jako dodatek do gleb. Soil Science Annual 67(3): 151-157.
  • Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A.. (2016). Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Vaste Biomass Valor 7: 201-235.
  • Oghenejoboh, K.M.; Otuagoma, S.O.; Ohimor, E.O. (2016). Application of cassava peels activated carbon in the treatment of oil refinery wastewater - a comparative analysis. Journal of Ecological Engineering 17(2): 52- 58.
  • Ozçimen, D.; Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy 35: 1319-1324.
  • Rajapaksha, A.U.; Vithanage, M.; Lee, S.S.; Seo, D-Ch.; Tsang, D.C.W.; Ok, Y.S. (2016). Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. Journal of Soils and Sediments 16(8): 2081- 2089.
  • Rashidi, N.A.;, Yusup, S. (2015). Effect of process variables on the production of biomass-based activated carbons for carbon dioxide capture and sequestration. Chemical Engineering Transactions 45: 1507-1512.
  • Ren, Z.-D.; Chen, L.; Ning, P. (2006). Progress in purification of PH3, H2S in yellow phosphorus tail gas with activated carbon. Modern Chemical Industry 26(11): 25-28.
  • Ronsse, F.; Van Hecke, S.; Dickinson, D.; Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5: 104-115.
  • Schmidt H.P. (2014). The use of biochar as building material. The Biochar Journal. Available at: https://www.biocharjournal.org/en/ct/3-The-use-of-biochar-as-building-material-. Accessed 11 April 2017.
  • Schmidt, H.P. (2013). The use of biochar as building material - cities as carbon sinks. Journal for terrior-wine and biodiversity. Available at: http://www.ithaka-journal.net/pflanzenkohle-zum-hauser-bauen-stadte-alskohlenstoffsenken?lang=en. Accessed 11 April 2017.
  • Schmidt, HP; Wilson K. (2014). The 55 uses of biochar. The Biochar Journal. Available at: https://www.biocharjournal.org/en/ct/2. Accessed 8 April 2017.
  • Scientific database Scopus. Available at: https://www.elsevier.com/solutions/scopus. Accessed 4 April 2017.
  • Spahis, N.; Addoun, A.; Mahmoudi, H.; Ghaffour, N. (2008). Purification of water by activated carbon prepared from olive Stones. Desalination 222(1-3): 519-527.
  • Sukiran, M.A.; Kheang, L.S.; Baker, N.A.; May, C.Y. (2011). Production and characterization of biochar from the pyrolysis of empty fruit bunches. American Journal of Applied Sciences 8(10): 984-988.
  • Swapna Priya, S.; Radha, K.V. (2015). Equilibrium, isotherm, kinetic and thermodynamic adsorption studies of tetracycline hydrochloride onto commercial grade granular activated carbon. International Journal of Pharmacy and Pharmaceutical Sciences 7(1): 42-51.
  • Vaccari, F.P.; Baront,i S.; Lugato, E.; Genesio, L.; Castaldi, S.; Fornasier, F.; Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34: 231- 238.
  • Verheijen, F.; Jeffery, S.; Bastos, C.; Van Der Velde, M.; Diafas, I. (2010). JRC Scientific and technical Report: Biochar Application to Soils. Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/ JRC55799/jrc_biochar_soils.pdf. Accessed 11 April 2017.
  • Xuea, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200-202: 673- 680.
  • Ying-Ying, W.; Zhen-Hu, X. (2016). Multi-walled carbon nanotubes and powder-activated carbon adsorbents for the removal of nitrofurazone from aqueous solution. Journal of Dispersion Science and Technology 37(5): 613- 624.
  • Zhang, X.; Zhang, S.; Yang, H.; Feng, Y.; Chen, Y.; Wang, X.; Chen, H. (2014). Nitrogen enriched biochar modified by high temperature CO2-ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal 257: 20-27.
  • Zhang, Y.-J.; Xing, Z.-J.; Duan, Z.-K.; Li, M.; Wang, Y. (2014). Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Applied Surface Science 315(1): 279-286.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171495012

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.