PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 5 | nr 4 | 74--81
Tytuł artykułu

The ice phenomena dynamics of small anthropogenic water bodies in the Silesian Upland, Poland

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the dynamics of the process of a course of ice creation phenomena in two small water bodies located in the Silesian Upland. The studies and observations of ice formation on the water bodies were conducted during the period 10th November 2011 to 23rd March 2012. The following parameters were determined each day: degree of ice coverage on each water body, thickness and ice structure and thickness of snow cover on each water body. From the studies it results that a course of the ice formation of both water bodies was almost identical. The same maximum ice thickness was recorded in both cases. It was 36 cm in that season, with slight differences in average thickness. The course of particular phases of ice formation in different water regions was also very similar. The number of days with the ice phenomena and the number of days from the beginning to the end of the ice phenomena were identical in both cases, being 96 and 131 days, respectively. The slight differences over several days were recorded in the case of: number of days with shore ice (lb), number of days with partial ice cover (lcz), number of days with an incomplete ice cover (lnp), number of breaks in the ice cover (B). Additionally, with daily measurements of ice cover thickness the relationships between the course of the average daily air temperature from the meteorological station of Faculty of Earth Sciences of University of Silesia and the daily changes in the ice thickness in the water regions in question were determined by using Spearman's correlation coefficient. In both cases the relationships were strong and they were r= -0,84(p<0,001) for the Amendy water body and r= -0,87 (p<0,001) for the Żabie Doły S water body. The maximum and average ice thickness, duration of the ice phenomena and ice cover and the obtained correlation coefficients between the air temperature and the changes in the ice thickness show that the water bodies in question are characterized by a quasi-natural ice regime.(original abstract)
Rocznik
Tom
5
Numer
Strony
74--81
Opis fizyczny
Twórcy
Bibliografia
  • Benson B.J., Magnuson J.J., Jensen O.P., Card V.M., Hodgkins G., Korhonen J., Livingstone D.M., Stewart K.M., Weyhenmeyer G.A., Granin N.G. 2012. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005). Climatic Change, 112, 2: 299-323.Web of ScienceGoogle Scholar
  • Choiński A., Ptak M., Skowron R., Strzelczak A. 2015. Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnol. - Ecol. Manage. Inland Waters, 53: 42-49.Google Scholar
  • Elo A.R. 2007. Effects of climate and morphology on temperature conditions of lakes. Report Series in Geophysics, 51, Helsinki, Univ. of Helsinki, Division of Geophysics.Google Scholar
  • Fang X., Stefan H.G. 1998. Potential climate warming effects on ice covers of small lakes in the contiguous U.S. Cold Reg. Sci. Tech., 27, 2: 119-140.Google Scholar
  • Gao S.B., Stefan H.G. 1999. Multiple linear regression for lake ice and lake temperature characteristics. J. Cold Reg. Eng., 13, 2: 59-77.CrossrefGoogle Scholar
  • Jensen O.P., Benson B.J., Magnuson J.J., Card V.M., Futter M.N., Soranno P.A., Stewart K.M. 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanogr., 52, 5: 2013-2026.Web of ScienceGoogle Scholar
  • Kirillin G., Leppäranta M., Terzhevik A., Granin N., Bernhardt J., Engelhardt Ch., Efremova T., Golosov S., Palshin N., Sherstyankin P., Zdorovennova G., Zdorovennov R. 2012. Physics of seasonally ice-covered lakes: a review. Aquatic Sci., 74, 4: 659-682.Google Scholar
  • Leppäranta M. 1983. A growth model for black ice, snow ice and snow thickness in subarctic basins. Nordic Hydrol., 14, 2: 59-70.Google Scholar
  • Leppäranta M. 2009. Modelling the formation and decay of lake ice. [In:] George G. (ed.) The impact of climate change on European lakes. Springer, Dordrecht: 63-83.Google Scholar
  • Leppäranta M. 2015. Freezing of lakes and the evolution of their ice cover. Berlin, Springer-Verlag.Google Scholar
  • Leppäranta M., Wang K. 2008. The ice cover on small and large lakes: scaling analysis and mathematical modelling. Hydrobiologia, 599, 1: 183-189.Web of ScienceGoogle Scholar
  • Livingstone D.M. 1997. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37, 2 : 407-439.CrossrefGoogle Scholar
  • Livingstone D.M. 1999. Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic Oscillation. Limnol. Oceanogr., 44, 6: 1486-1497.Google Scholar
  • Livingstone D.M. 2000. Large-scale climatic forcing detected in historical observations of lake ice break-up. Verhandlungen des Int. Verein Limnol., 27: 2775-2783.Google Scholar
  • Livingstone D.M. 2003. Impact of secular climate change on the thermal structure of a large temperate Central European lake. Climatic Change, 57, 1: 205-225.Google Scholar
  • Machowski R. 2010. Przemiany geosystemów zbiorników wodnych powstałych w nieckach osiadania na Wyżynie Katowickiej. Wyd. Uniw. Śląskiego, Katowice.Google Scholar
  • Machowski R. 2013. Course of ice phenomena in small water reservoir in Katowice (Poland) in the winter season 2011/2012. Environ. Soc.-econ. Stud., 1, 3: 7-13.Google Scholar
  • Machowski R. 2014. Przebieg zjawisk lodowych w niewielkim zbiorniku wodnym w Katowicach w latach 2011-2013. [In:] Ciupa T., Suligowski R. (ed.) Woda w mieście. Monogr. Kom. Hydrol. Pol. Tow. Geogr., 2, Inst. Geogr. Uniw. J. Kochanowskiego, Kielce: 135-144.Google Scholar
  • Machowski R., Rzetała M.A., Rzetała M., Solarski M. 2016. Geomorphological and hydrological effects of subsidence and land use change in industrial and urban areas. Land Degrad. Dev., 27, 7: 1740-1752.CrossrefWeb of ScienceGoogle Scholar
  • Magnuson J.J., Robertson D.M., Benson B.J., Wynne R.H., Livingstone D.M., Arai T., Assel R.A., Barry R.G., Card V., Kursisto E., Granin N.G., Prowse T.D., Steward K.M., Vuglinski V.S. 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 5482: 1743-1746.Google Scholar
  • Marszelewski W., Skowron R. 2006. Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes. Hydrol. Sci. J., 51, 2: 336-349.Google Scholar
  • Ménard P., Duguay C.R., Flato G.M,. Rouse W.R. 2002. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada. Hydrol. Process., 16, 18: 3691-3706.Google Scholar
  • Pociask-Karteczka J., Choiński A. 2012. Recent trends in ice cover duration for Lake Morskie Oko (Tatra Mountains, East-Central Europe). Hydrol. Res., 43, 4: 500-506.Google Scholar
  • Rzętała M. 2012. Funkcjonowanie pokrywy lodowej niewielkiego zbiornika wodnego w Czeladzi w latach 2010-2012. Acta Geogr. Silesiana, nr specjalny 2: 71-76.Google Scholar
  • Rzętała M. 2014. Ice cover development in a small water body in an undrained depression. Int. Multidiscyplinary Sci. Geoconf., 14th GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems, Albena, Bułgaria: 397-404.Google Scholar
  • Rzętała M., Solarski M. 2011. Codzienne obserwacje terenowe źródłem identyfikacji nowych form i procesów zlodzenia zbiornika wodnego. [In:] Machowski R., Rzętała M.A. (eds) Z bad. nad wpływem antropopresji na środ., 12: 155-164.Google Scholar
  • Rzętała M.A., Rzętała M. 2009. Zlodzenie niewielkiego zbiornika wodnego (aspekty poznawcze i użytkowe). Kształ. środ. geogr. ochr. przyr. obsz. uprzem. zurban., 40: 171-179.Google Scholar
  • Rzętała M.A., Rzętała M. 2012. Ice cover on a small water body at Czeladź, Upper Silesia, during 2008-2012-Zlodzenie niewielkiego zbiornika wodnego w Czeladzi w latach 2008-2012. [In:] Natural and anthropogenic transformations of lakes. Inst. Meteorol. Water Manage. -National Res. Inst., Branch in Poznań, Limnol. Center, Poznań: 91-93.Google Scholar
  • Sharma S., Magnuson J.J., Batt R.D., Winslow L.A., Korhonen J., Aono Y. 2016. Direct observations of ice seasonality reveal changes in climate over the past 320-570 years. Sci. Reports, 6, 25061: 1-11.Google Scholar
  • Skowron R. 2009. Changeability of the ice cover on the lakes of northern Poland in the light of climatic changes. Bull. Geogr. - Physical Geogr., 1: 103-124.Google Scholar
  • Skowron R. 2011. Zróżnicowanie i zmienność wybranych elementów reżimu termicznego wody w jeziorach na Niżu Polskim. Wyd. Nauk. Uniw. M. Kopernika, Toruń.Google Scholar
  • Solarski M. 2017. Występowanie zjawisk lodowych w zbiornikach wodnych Wyżyny Śląskiej w warunkach antropopresji. Uniw. Śląski, Wydział Nauk o Ziemi, Sosnowiec [PhD Thesis, Typescript].Google Scholar
  • Solarski M., Pradela A., Rzętała M. 2011. Natural and anthropogenic influences on ice formation on various water bodies of the Silesian Upland (southern Poland). Limnol. Rev., 11, 1: 33-44.Google Scholar
  • Stefan H.G., Fang X. 1997. Simulated climate change effects on ice and snow covers on lakes in a temperate region. Cold Reg. Sci. Tech., 25, 2: 137-152.Google Scholar
  • Vavrus S.J., Wynne R.H., Foley J.A. 1996. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr., 41, 5: 822-831.Google Scholar
  • Weyhenmeyer G. A., Meili M., Livingstone D. M., 2004: Nonlinear temperature response of lake ice breakup. Geophys. Res. Letters, 31, 7: 1-4.CrossrefGoogle Scholar
  • Yang Y., Leppäranta M., Cheng B., Li Z. 2012. Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus A, 64, 17202: 1-12.CrossrefWeb of ScienceGoogle Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171495510

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.