PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | vol. 4, t. 330 | 55--75
Tytuł artykułu

A New Test for Independence in 2×2 Contingency Tables

Autorzy
Treść / Zawartość
Warianty tytułu
Nowy test niezależności dla tablic dwudzielczych 2×2
Języki publikacji
EN
Abstrakty
EN
In statistical literature there exist many tests to reveal the independence of two qualitative variables in two-way contingency tables (CTs), in particular in 2×2 CTs. In this paper four independence tests were compared. These are: the chi-square test, being the most popular type of power divergence statistics; the modular test and the d-square test, which is a modification of the Pearson's test; the logarithmic minimum test which is a new proposal. Critical values for the tests listed above were determined with the Monte Carlo method. In order to compare the tests, the measure of untruthfulness of H0 was proposed and the power of the tests was calculated. (original abstract)
W literaturze statystycznej istnieje wiele miar do ujawniania niezależności dwóch zmiennych jakościowych w tabelach kontyngencji, w szczególności w tabelach dwudzielczych 2×2. W niniejszym artykule porównano cztery testy niezależności. Są to: test chi-kwadrat, jako najbardziej znany przedstawiciel statystyk power divergence, test modułowy oraz test d-kwadrat, jako modyfikacje testu Pearsona, test logarytmiczno-minimalny, będący nową propozycją. Wartości krytyczne dla wyżej wymienionych testów zostały wyznaczone metodami Monte Carlo. W celu porównania testów zaproponowano miarę nieprawdziwości H0 i wyznaczono ich moc. (abstrakt oryginalny)
Rocznik
Strony
55--75
Opis fizyczny
Twórcy
  • Pomeranian University in Słupsk
Bibliografia
  • Agresti A. (2002), Categorical Data Analysis, Wiley, New Jersey.
  • Albert J.H. (1990), A Bayesian test for a two-way contingency table using independence, "Prior. Canadian Journal of Statistics", vol. 18, no. 4, pp. 347-363.
  • Andrés A.M., Tejedor I.H., Mato A.S. (1995), The Wilcoxon, Spearman, Fisher, χ2, Student and Pearson Tests and 2x2 Tables, "The Statistician", pp. 441-450.
  • Beh E.J., Farver T.B. (2009), An evaluation of non-iterative methods for estimating the linear-by-linear parameter of ordinal log-linear models, "Australian New Zealand Journal of Statistics", vol. 51, no. 3, pp. 335-352.
  • Berry K.J., Mielke P.W. (1988), Monte Carlo comparisons of the asymptotic chi-square and likelihood-ratio tests with the no asymptotic chi-square tests for sparse r×c tables, "Psychological Bulletin", vol. 103, no. 2, p. 256.
  • Blitzstein J., Diaconis P. (2011), A sequential importance sampling algorithm for generating random graphs with prescribed degrees, "Internet Mathematics", vol. 6, pp. 489-522.
  • Campbell I. (2007), Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations, "Statistics in Medicine", vol. 26, no. 19, pp. 3661-3675.
  • Ceyhan E. (2010), Directional clustering tests based on nearest neighbor contingency tables, "Journal of nonparametric Statistics", vol. 22, no. 5, pp. 599-616.
  • Chang C.H., Lin J.J., Pal N. (2011), Testing the equality of several gamma means: a parametric bootstrap method with applications, "Computational Statistics", vol. 26, no. 1, pp. 55-76.
  • Chang C.H., Pal N. (2008), A revisit to the Behrens-Fisher problem: comparison of five test methods, "Communications in Statistics - Simulation and Computation", vol. 37, no. 6, pp. 1064-1085.
  • Chen Y., Diaconis P., Holmes S.P., Liu J.S. (2005), Sequential Monte Carlo methods for statistical analysis of tables, "Journal of the American Statistical Association", vol. 100, pp. 109-120.
  • Chen Y., Dinwoodie I.H., Sullivant S. (2006), Sequential importance sampling for multiway tables, "The Annals of Statistics", pp. 523-545.
  • Clogg C.C., Eliason S.R. (1987), Some common problems in log-linear analysis, "Sociological Methods Research", vol. 16, no. 1, pp. 8-44.
  • Cochran W.G. (1952), The χ2 test of goodness of fit, "The Annals of Mathematical Statistics", pp. 315-345.
  • Cochran W.G. (1954), Some methods for strengthening the common χ2 tests, "Biometrics", vol. 10, no. 4, pp. 417-451.
  • Cohen J., Nee J.C. (1990), Robustness of Type I Error and Power in Set Correlation Analysis of Contingency Tables, "Multivariate Behav. Res.", vol. 25, no. 3, pp. 341-350.
  • Cressie N., Read T. (1984), Multinomial Goodness-of-Fit Tests, "J. R. Stat. Soc. Ser. B. Stat. Methodol.", vol. 46, pp. 440-464.
  • Cressie N., Read T.R. (1989), Pearson's χ2 and the log likelihood ratio statistics G2: a comparative review, "International Statistical Review/Revue Internationale de Statistique", pp. 19-43.
  • Cryan M., Dyer M. (2003), A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant, "Journal of Computer and System Sciences", vol. 67, pp. 291-310.
  • Cryan M., Dyer M., Goldberg L.A., Jerrum M., Martin R. (2006), Rapidly mixing Markov chains for sampling contingency tables with a constant number of rows, "SIAM Journal on Computing", vol. 36, pp. 247-278.
  • Cung C. (2013), Crime and Demographics: An Analysis of LAPD Crime Data, "M. sc. Thesis", UCLA, Department of Statistics, Los Angeles.
  • Davis C.S. (1993), A new approximation to the distribution of Pearson's chi-square, "StatisticaSinica", pp. 189-196.
  • Desalvo S., Zhao J.Y. (2016), Random Sampling of Contingency Tables via Probabilistic Divide-and-Conquer, "ArXiv preprint", ArXiv, 1507.00070v4.
  • Diaconis P., Efron B. (1985), Testing for independence in a two-way table: new interpretations of the chi-square statistics, "The Annals of Statistics", pp. 845-874.
  • Diaconis P., Sturmfels B. (1998), Algebraic algorithms for sampling from conditional distributions, "The Annals of Statistics", vol. 26, pp. 363-397.
  • Dickhaus T., Straßburger K., Schunk D., Morcillo-Suarez C., Illig T., Navarro A. (2012), How to analyze many contingency tables simultaneously in genetic association studies, "Statistical Applications in Genetics and Molecular Biology", vol. 11, no. 4, pp. 1544-6115.
  • Egozcue J.J., Pawlowsky-Glahn V., Templ M., Hron K. (2015), Independence in contingency tables using simplicial geometry, "Communications in Statistics-Theory and Methods", vol. 44, no. 18, pp. 3978-3996.
  • El Galta R., Stijnen T., Houwing-Duistermaat J.J. (2008), Testing for genetic association: a powerful score test, "Stat Med.", vol. 27, no. 22, pp. 4596-4609.
  • Fisher R.A. (1922), On the interpretation of χ2 from contingency tables, and the calculation of P, "Journal of the Royal Statistical Society", vol. 85, no. 1, pp. 87-94.
  • Fishman G.S. (2012), Counting contingency tables via multistage Markov chain Monte Carlo, "Journal of Computational and Graphical Statistics", vol. 21, pp. 713-738.
  • García J.E., González-López V.A. (2014), Independence tests for continuous random variables based on the longest increasing subsequence, "Journal of Multivariate Analysis", vol. 127, pp. 126-146.
  • García J.E., González-López V.A. (2016), Independence test for sparse data, "International Conference of Numerical Analysis and Applied Mathematics 2015", AIP Publishing, vol. 1738, no. 1, p. 140002.
  • Garcia-Perez M.A., Nunez-Anton V. (2009), Accuracy of the power-divergence statistics for testing independence and homogeneity in two-way contingency tables, "Commun. Stat. - Simul. Comput.", vol. 38, pp. 503-512.
  • Garside G.R., Mack C. (1976), Actual type 1 error probabilities for various tests in the homogeneity case of the 2×2 contingency table, "The American Statistician", vol. 30, no. 1, pp. 18-21.
  • Haber M. (1987), A comparison of some conditional and unconditional exact tests for 2x2 contingency tables: A comparison of some conditional and unconditional exact tests, "Communications in Statistics - Simulation and Computation", vol. 16, no. 4, pp. 999-1013.
  • Haberman S.J. (1981), Tests for independence in two-way contingency tables based on canonical correlation and on linear-by-linear interaction, "The Annals of Statistics", vol. 9, no. 6, pp. 1178-1186.
  • Hall P., Wilson S.R. (1991), Two guidelines for bootstrap hypothesis testing, "Biometrics", pp. 757-762.
  • Hui-Qiong L., Guo-Liang T., Xue-Jun J., Nian-Sheng T. (2016), Testing hypothesis for a simple ordering in incomplete contingency tables, "Computational Statistics Data Analysis", vol. 99, pp. 25-37.
  • Iossifova R., Marmolejo-Ramos F. (2013), When the body is time: spatial and temporal deixis in children with visual impairments and sighted children, "Research in Developmental Disabilities", vol. 34, no. 7, pp. 2173-2184.
  • Irwin J.O. (1935), Tests of significance for differences between percentages based on small numbers, "Metron", vol. 12, no. 2, pp. 84-94.
  • Jeong H.C., Jhun M., Kim D. (2005), Bootstrap tests for independence in two-way ordinal contingency tables, "Computational Statistics Data Analysis", vol. 48, no. 3, pp. 623-631.
  • Koehler K.J., Larntz K. (1980), An empirical investigation of goodness-of-fit statistics for sparse multinomials, "Journal of the American Statistical Association", vol. 75, no. 370, pp. 336-344.
  • Lawal H.B., Uptong G.J.G. (1984), On the use of χ2 as a test of independence in contingency tables with small cell expectations, "Australian Journal of Statistics", vol. 26, pp. 75-85.
  • Lawal H.B., Uptong G.J.G. (1990), Comparisons of Some Chi-squared Tests for the Test of Independence in Sparse Two-Way Contingency Tables, "Biometrical Journal", vol. 32, no. 1, pp. 59-72.
  • Lin J.J., Chang C.H., Pal N. (2015), A revisit to contingency table and tests of independence: bootstrap is preferred to Chi-Square approximations as well as Fisher's exact test, "Journal of Biopharmaceutical Statistics", vol. 25, no. 3, pp. 438-458.
  • Lipsitz S.R., Fitzmaurice G.M., Sinha D., Hevelone N., Giovannucci E., Hu J.C. (2015), Testing for independence in J×K contingency tables with complex sample survey data, "Biometrics", vol. 71, no. 3, pp. 832-840.
  • Lydersen S., Fagerland M.W., Laake P. (2009), Recommended tests for association in 2×2 tables, "Statistics in Medicine", vol. 28, no. 7, pp. 1159-1175.
  • Meng R.C., Chapman D.G. (1966), The power of chi square tests for contingency tables, "Journal of the American Statistical Association", vol. 61, no. 316, pp. 965-975.
  • Nandram B., Bhatta D., Bhadra D. (2013), A likelihood ratio test of quasi-independence for sparse two-way contingency tables, "Journal of Statistical Computation and Simulation", vol. 85, no. 2, pp. 284-304.
  • Pearson K. (1904), On the theory of contingency and its relation to association and normal correlation, "K. Pearson, Early Papers".
  • Shan G., Wilding G. (2015), Unconditional tests for association in 2×2 contingency tables in the total sum fixed design, "Statistica Neerlandica", vol. 69, no. 1, pp. 67-83.
  • Sulewski P. (2009), Two-by-two Contingency Table as a Goodness-of-Fit Test, "Computational Methods in Science and Technology", vol. 15, no. 2, pp. 203-211.
  • Sulewski P. (2013), Modyfikacja testu niezależności [Modification of the independence test], "Statistical News - Central Statistical Office", vol. 10, pp. 1-19.
  • Sulewski P. (2014), Statystyczne badanie współzależności cech typu dyskretne kategorie [The statistical study of features interdependence of discrete categories type], Pomeranian University, Slupsk.
  • Sulewski P., Motyka R. (2015), Power analysis of independence testing for contingency tables, "Scientific Journal of Polish Naval Academy", vol. 56, no. 1, pp. 37-46.
  • Sulewski P. (2016a), Moc testów niezależności w tablicy dwudzielczej [Power of independence test in the contingency tables], "Statistical News - Central Statistical Office", vol. 8, pp. 1-17.
  • Sulewski P. (2016b), Moc testów niezależności w tablicy dwudzielczej większej niż 2x2 [Power of independence test in the 2´2 contingency tables bigger than 2x2], "Statistical Review", vol. 63, no. 2, pp. 191-209.
  • Taneichi N., Sekiya Y. (2007), Improved transformed statistics for the test of independence in r×s contingency tables, "Journal of Multivariate Analysis", vol. 98, no. 8, pp. 1630-1657.
  • Vélez J.I., Marmolejo-Ramos F., Correa J.C. (2016), A Graphical Diagnostic Test for Two-Way Contingency Tables, "RevistaColombiana de Estadística", vol. 39, no. 1, pp. 97-108.
  • Wickens T.D. (1969), Multiway Contingency Tables Analysis for the Social Sciences, Psychology Press, United States.
  • Yenigün C.D., Székely G.J., Rizzo M.L. (2011). A Test of Independence in Two-Way Contingency Tables Based on Maximal Correlation, "Communications in Statistics-Theory and Methods", vol. 40, no. 12, pp. 2225-2242.
  • Yoshida R., Xi J., Wei S., Zhou F., Haws D. (2011), Semigroups and sequential importance sampling for multiway tables, "ArXiv preprint", ArXiv, 1111, p. 6518.
  • Yu Y. (2014), Tests of independence in a single 2×2 contingency table with random margins, Doctoral dissertation, Worcester Polytechnic Institute, Worcester.
  • Zelterman D. (1987). Goodness-of-fit tests for large sparse multinomial distributions, "J. Am. Stat. Assoc.", vol. 82, pp. 624-629.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171503024

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.