PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 3(23) | 31--37
Tytuł artykułu

Wyznaczanie kinetyki suszenia dla dyni makaronowej (Cucurbita Pepo L.)

Treść / Zawartość
Warianty tytułu
Inspection of the Drying Kinetics for Spaghetti Squash (Cucurbita Pepo L.)
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to examine the drying kinetics of spaghetti squash (Cucurbita pepo L.) under the different temperature and air velocities with tray dryer. Drying process was carried out by placing the samples into the tray dryer at temperatures of 40; 50; 60 and 70 °C and air velocities of 1; 1.4 and 1.8 m/s with an initial thickness of the samples 0.6±0.2 mm. Examination of drying kinetics of spaghetti squash was carried out by testing the conformance of Newton Page Henderson, Modified Page, and Pabis Logarithmic Two - term exponential Two - term, Diffusion approach Modified Henderson and Pabis, Verma and Midilli which were widely used in food drying. Nonlinear regression was used for calculating the goodness of fit and model coefficients. Goodness of fit was determined according to the comparison of the regression coefficient, sum of squares error and reduced chi-square. As a result of the statistical analysis, it was found that Midilli was the best model which describes the drying kinetics. Effective diffusion coefficient (Deff) was varying from 4.15∙10-10 to 2.04∙10-9 m2/s with respect to the drying temperatures. The relationship between drying temperature and effective diffussion coefficients was confirmed by the Arrhenius theory for all air velocities. (original abstract)
Celem pracy było wyznaczenie kinetyki suszenia dyni makaronowej (Cucurbita pepo L.) dla różnych temperatur i prędkości powietrza. Proces suszenia przeprowadzono przy temperaturach 40, 50, 60 i 70°C i prędkościach powietrza 1, 1,4 i 1,8 m/s. Próbki o grubości 0,6 ± 0,2 mm umieszczano na tacach suszarniczych. Do opisu kinetyki suszenia dyniowego spaghetti zastosowano matematyczne modele Newtona, Page, Modified Page, Hendersona i Pabisa, Logarithmic, Two term, Exponential Two term, Diffusion Approach, Modified Henderson i Pabis, Verma i Midilli, które są powszechnie używane w suszeniu żywności. Współczynniki dopasowania i współczynniki modelu okroślono na podstawie regresji nieliniowej. Poprawność dopasowania określono w oparciu o porównanie współ-czynnika regresji, sumy błędów kwadratów i zredukowanego chi-kwadrat. W wyniku analizy statystycznej stwierdzono, że Midilli był najlepszym modelem opisującym kinetykę suszenia. Współczynnik skuteczności dyfuzji (Deff) mieścił się w przedziale od 4,15∙10-10 do 2,04∙10-9 m2/s w odniesieniu do temperatur suszenia. Zależność pomiędzy temperaturą suszenia a współczynnikiem dyfuzji została potwierdzony teorią Arrheniusa dla wszystkich przyjętych w planie badań prędkości powietrza. (abstrakt oryginalny)
Rocznik
Tom
Strony
31--37
Opis fizyczny
Twórcy
autor
  • Ege University Engineering, Izmir
autor
  • Ege University Engineering, Izmir
  • Ege University Engineering, Izmir
autor
  • Ege University Engineering, Izmir
  • Ege University Engineering, Izmir
Bibliografia
  • Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4-6), 121-126. DOI:10.1016/S0038-092X(96)00130-2.
  • Ağcam, E., Akyıldız, A. (2015). Siyah Havuç Posasından Antosiyaninlerin Ekstraksiyonuna Farklı Çözgen Ve Asit Konsantrasyonlarının Etkileri. Gıda 40.
  • Cemeroğlu, B. (2011). Meyve ve Sebze İşleme Teknolojisi, 1. Baskı, İstanbul, Nobel Yayınevi. ISBN 978-975-98578-4-4.
  • Dandamrongrak, R., Young, G., Mason, R. (2002). Evaluation of Various pre-treatments fort he dehydration of banana and selection of Suitable Drying Models. Journal of Food Engineering, 95, 139-146. DOI:10.1016/S0260-8774(02)00028-6
  • Doymaz, I., Gorel, O., Akgun, N.A. (2004). Drying characteristics of the solid byproduct of olive oil extraction. Biosystem Engineering, 88, 213-219. DOI: 10.1016/j.biosystemseng.2004.03.003.
  • Doymaz, I. (2004). Effect of drying treatment on air drying of plums. Journal of Food Engineering, 64(4), 465-470. DOI:10.1016/j.jfoodeng.2003.11.013.
  • Doymaz, I. (2006). The kinetics of forced convective air-drying of pumpkin slices. Journal Of Food Engineering 79, 243-248. DOI:10.1016/j.jfoodeng.2006.01.049.
  • Erbay, Z. (2008). The ınvestigation of modelling, optimization and exergetic analysis of drying of olive leaves. MSc, Ege University, İzmir, Turkey.
  • Ertekin, C. Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359. DOI:10.1016/j.jfoodeng.2003.08.007.
  • Faustino, J.M.F., Barroca, M.J., Guine´, R.P.F. (2007). Study of the drying kinetics of green bell pepper and chemical characterization. Food Bioproducts Process, 85(C3), 163-170. DOI: 10.1205/fbp07009.
  • Goyal, R.K., Kingsly, A.R.P., Manikantan, M.R., Ilyas, S.M. (2006). Thin-layer Drying kinetics of raw mango slices. Biosystems Engineering, 95(1), 43-49. DOI: 10.1016/j.biosystemseng.2006.05.001.
  • Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39, 337-344. DOI:10.1016/S0260-8774(98)00132-0.
  • Kavak-Akpınar, E., Bicer, Y., Yildiz, C. (2002). Thin layer drying of red pepper. Journal of Food Engineering, 59, 99-104. DOI: 10.1016/S0260-8774(02)00425-9.
  • Lahsasni, S., Kouhila, M., Mahrouz, M., Idlimam, A., Jamali, A. (2004). Thin layer convective solar drying and mathematical modelling of prickly pear peel (Opuntina ficus indica). Energy, 29, 211-224. DOI: 10.1016/j.energy.2003.08.009.
  • Lomauro, C.J., Bakshi, A.S., Labuza, T.P. (1985). Moisture transfer properties of dry and semimoist foods. Journal of Food Science, 50, 397-400. DOI: 10.1111/j.1365-2621.1985.tb13411.x.
  • Lopez, A., Iguaz, A., Esnoz, A., Virseda, P. (2000). Thin layer drying behaviour of vegetable wastes from wholesale market dry. Technology, 18, 995-1006. DOI: 10.1080/07373930008917749.
  • McMinn, W.A.M (2006). Thin layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. Journal of Food Engineering, 72, 113-123.
  • Menemencioğlu, Y.E., Emre, U., Candemir, A., Gülşen, O. (2013). Kayseri'de çerezlik kabak üretiminin sosyo-ekonomik, yetiştiricilik ve pazarlama durumu açısından incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 220-226.
  • Midilli, A. (2001). Determination of pistachio drying behaviour and conditions in a solar drying system. International Journal of Energy Research, 25, 715-725. DOI: 10.1002/er.715.
  • Midilli, A., Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122. DOI: 10.1016/S0196-8904(02)00099-7.
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for singlelayer drying. Drying Technology, 20, 1503-1513. DOI: 10.1081/DRT-120005864.
  • Overhults, D.G., White, G.M., Hamilton, H.E., Ross, I.J. (1973). Drying soybeans with heated air. Transaction of the ASAE, 16, 112-113. DOI:10.13031/2013.37459.
  • Özdemir, M., Devres, Y.O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42, 225-233. DOI:10.1016/S0260-8774(99)00126-0.
  • Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin-layers. MSc, Purdue University, West Lafayette, IN
  • Pal, U.S., Chakraverty, A. (1997). Thin layer convection drying of mushrooms. Energy Conversion and Management, 38(2), 107-113. DOI:10.1016/0196-8904(96)00020-9.
  • Sahin, A.Z., Dincer, I. (2005). prediction of drying times for irregularshaped multi-dimensional moist solids. Journal of Food Engineering, 71, 119-126. DOI: 10.1016/j.jfoodeng.2004.10.024.
  • Sarsavadia, P.N., Sawhney, R.L., Pangavhane, D.R., Singh, S.P. (1999). Drying behaviour of brined onion slices. Journal of Food Engineering, 40, 219-226. DOI: 10.1016/S0260-8774(99)00058-8.
  • Singh, R.P., Heldman, R.D. (2015). İntroduction to Food Engineering. 5 th ed. New York, USA. ISBN 978-605-320-151-9.
  • Srikiatden, J., Roberts, J.S. (2006). Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. Jornal of Food Engineering, 49, 143-152. DOI: 10.1016/j.jfoodeng.2005.02.026.
  • Sun, J., Hu, X., Zhao, G., Wu, J., Wang, Z., Chen, F., Liao, X. (2007). Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Science Technol.ology International, 13, 91-97. DOI: 10.1016/j.jfoodeng.2005.02.026.
  • Yağcıoğlu, A. (1999). Tarım Ürünlerinde Kurutma Tekniği. Ege Üniversitesi Ziraat Fakültesi Yayınları, İzmir.
  • Yaldiz, O., Ertekin, C., Uzun, H.I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26, 457-465. DOI:10.1016/S0360-5442(01)00018-4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171503155

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.