PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | vol. 5, t. 331 | 169--183
Tytuł artykułu

On the Simulation Study of Jackknife and Bootstrap MSE Estimators of a Domain Mean Predictor for Fay-Herriot Model

Treść / Zawartość
Warianty tytułu
O badaniu symulacyjnym własności estymatorów MSE predyktora wartości średniej dla modelu Faya-Herriota bazujących na metodzie jackknife oraz bootstrap
Języki publikacji
EN
Abstrakty
W artykule rozważany jest problem estymacji błędu średniokwadratowego (MSE) w przypadku predykcji wartości średniej w domenie, w oparciu o model Faya-Herriota. W badaniu symulacyjnym analizowane są własności ośmiu estymatorów MSE, w tym bazujących na metodzie jackknife (Jiang, Lahiri, Wan (2002), Chen, Lahiri (2002, 2003)) oraz parametrycznej metodzie bootstrap (Gonzalez-Manteiga et al. (2008), Buthar, Lahiri (2003)). W modelu Faya-Herriota zakładana jest niezależność składników losowych, a obciążenia estymatorów MSE są małe dla dużej liczby domen. Celem artykułu jest porównanie własności estymatorów MSE przy różnej liczbie domen i błędnej specyfikacji modelu wynikającej z występowania korelacji efektów losowych w badaniu symulacyjnym. (abstrakt oryginalny)
EN
 We consider the problem of the estimation of the mean squared error (MSE) of some domain mean predictor for Fay-Herriot model. In the simulation study we analyze properties of eight MSE estimators including estimators based on the jackknife method (Jiang, Lahiri, Wan, 2002; Chen, Lahiri, 2002; 2003) and parametric bootstrap (Gonzalez-Manteiga et al., 2008; Buthar, Lahiri, 2003). In the standard Fay-Herriot model the independence of random effects is assumed, and the biases of the MSE estimators are small for large number of domains. The aim of the paper is the comparison of the properties of MSE estimators for different number of domains and the misspecification of the model due to the correlation of random effects in the simulation study. (original abstract)
Rocznik
Strony
169--183
Opis fizyczny
Twórcy
  • University of Economics in Katowice
Bibliografia
  • Bell W. (1997), Models for county and state poverty estimates. Preprint, Statistical Research Division, U.S. Census Bureau.
  • Bell W. (2001), Discussion with "Jackknife in the Fay-Herriot Model with An Example", "Proc. of the Seminar of Funding Opportunity in Survey Research", pp. 98-104.
  • Butar F.B., Lahiri P. (2003), On Measures of Uncertainty of Empirical Bayes Small-Area Estimators, "Journal of Statistical Planning and Inference", vol. 112, pp. 635-676.
  • Chatterjee S., Lahiri P., Li H. (2008), Parametric Bootstrap Approximation to the Distribution of EBLUP and Related Prediction Intervals in Linear Mixed Models, "The Annals of Statistics", vol. 36, no. 3, pp. 1221-1245.
  • Chen S., Lahiri P. (2002), A Weighted Jackknife MSPE Estimator in Small-Area Estimation, "Proceeding of the Section on Survey Research Methods", American Statistical Association, pp. 473-477.
  • Chen S., Lahiri P. (2003), A Comparison of Different MSPE Estimators of EBLUP for the Fay-Herriot Model, "Proceeding of the Section on Survey Research Methods", American Statistical Association, pp. 905-911.
  • Conley T.G. (1999), GMM estimation with cross selection dependence, "Journal of Econometrics", vol. 92(1), pp. 1-45.
  • Dacey M. (1968), A review of measures of contiguity for two and k-color maps, [in:] B. Berry, D. Marble (eds.), Spatial analysis: A Reader in Statistical Geography, Prentice Hall, Englewood Cliffs.
  • Datta G., Lahiri P. (2000), A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems, "Statistica Sinica", vol. 10, pp. 613-627.
  • Datta G.S., Rao J.N.K., Smith D.D. (2005), On Measuring the Variability of Small Area Estimators under a Basic Area Level Model, "Biometrica", vol. 92, pp. 183-196.
  • Fay R.E. III, Herriot R.A. (1979), Estimation of Incomes for Small Places: An Application of James-Stein Procedures to Census Data, "Journal of the American Statistical Association", vol. 74, pp. 269-277, http://dx.doi.org/10.2307/2286322.
  • Gonzales-Manteiga W., Lombardia M., Molina I., Morales D., Santamaria L. (2008), Bootstrap Mean Squared Error of Small-Area EBLUP, "Journal of Statistical Computation and Simulation", vol. 78, pp. 433-462, http://dx.doi.org/10.1007/s00180-008-0138-4.
  • Henderson C.R. (1950), Estimation of genetic parameters (Abstracts), "Annals of Mathematical Statistics", vol. 21, pp. 309-310.
  • Jędrzejczak A. (2011), Metody analizy rozkładów dochodów i ich koncentracji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
  • Jiang J. (2007), Linear and Generalized Linear Mixed Models and Their Applications, Springer Science+Business Media, New York.
  • Jiang J., Lahiri P. (2006), Mixed Model Prediction and Small Area Estimation, "Test", vol. 15, no. 1, pp. 1-96, http://dx.doi.org/10.1007/BF02595419.
  • Jiang J., Lahiri P., Wan S.-M. (2002), Unified Jackknife Theory for Empirical Best Prediction with M-estimation, "The Annals of Statistics", vol. 30, pp. 1782-1810.
  • Kackar R.N., Harville D.A. (1981), Unbiasedness of two-stage estimation prediction procedures for mixed linear models, "Communications in Statistics", Series A, vol. 10, pp. 1249-1261.
  • Kackar R.N., Harville D.A. (1984), Approximations for Standard Errors of Estimators of Fixed and Random Effect in Mixed Linear Models, "Journal of the American Statistical Association", vol. 79, pp. 853-862.
  • Karpuk M. (2015), Wpływ czynników przestrzennych na ruch turystyczny w województwie zachodniopomorskim (2006-2012), "Zeszyty Naukowe Wydziału Nauk Ekonomicznych Politechniki Koszalińskiej", vol. 19, pp. 39-56.
  • Krzciuk M.K. (2015), On the simulation study of the properties of MSE estimators in small area statistics, Conference Proceedings. 33rd International Conference Mathematical Methods in Economics 2015, pp. 413-418.
  • Kuc M. (2015), Wpływ sposobu definiowania macierzy wag przestrzennych na wynik porządkowania liniowego państw Unii Europejskiej pod względem poziomu życia ludności, "Taksonomia 24", vol. 384, pp. 163-170.
  • Lahiri P. (2003), On the Impact of Bootstrap in Survey Sampling and Small-Area Estimation, "Statistical Science", vol. 18, no. 2, pp. 199-210.
  • Lohr S.L., Rao J.N.K. (2009), Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models, "Biometrika", vol. 96, pp. 457-468.
  • Molina I., Rao J. (2010), Small Area Estimation of Powerty indicators, "The Canadian Journal of Statistics", vol. 38, no. 3, pp. 369-385.
  • Prasad N.G.N., Rao J.N.K. (1990), The Estimation of the Mean Squared Error of Small-Area Estimators, "Journal of the American Statistical Association", vol. 85, no. 409, pp. 163-171, http:// dx.doi.org/10.2307/2289539.
  • Pietrzak M.B. (2010), Dwuetapowa procedura budowy przestrzennej macierzy wag z uwzględnieniem odległości ekonomicznej, "Oeconomia Copernicana", vol. 1, pp. 65-78.
  • Pratesi M., Salvati N. (2008), Small Area Estimation: The EBLUP Estimator Based on Spatially Correlated Random Area Effects, "Statistical Methods and Applications", vol. 17, pp. 113-141, http://dx.doi.org/10.1007/s10260-007-0061-9.
  • Rao J.N.K. (2003), Small Area Estimation, John Wiley Sons, Hoboken.
  • Rao J.N.K., You Y. (1994), Small Area Estimation by Combining Time-Series and Cross-Sectional Data, "Canadian Journal of Statistics", vol. 22, pp. 511-528.
  • R Development Core Team (2016), A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna.
  • Rao J.N.K., Molina I. (2015), Small Area Estimation, John Wiley Sons, Hoboken.
  • Rueda C., Mendez J.A., Gomez F. (2010), Small Area Estimators on Restricted Mixed Models, "Sociedad de Estadística e Investigación Operativa", vol. 16, pp. 558-579, http://dx.doi.org/10.1007/s11749-010-0186-2.
  • Slud E.V., Maiti T. (2006), Mean-Squared Error Estimation in Transformed Fay-Herriot Models, "Journal of the Royal Statistical Society. Series B (Statistical Methodology)", vol. 68, pp. 239-257.
  • Suchecki B. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, C.H. Beck, Warszawa.
  • Wang J., Fuller W.A. (2003), The Mean Squared Error of Small Area Predictors Constructed with Estimated Area Variances, "Journal of the American Statistical Association", vol. 98, pp. 716-723.
  • Wolter K.M. (1985), Introduction to variance estimation, Springer-Verlag, New York.
  • Żądło T. (2009), On prediction of the domain total under some special case of type A general Linear Mixed Models, "Folia Oeconomica", vol. 228, pp. 105-112.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171504797

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.