PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 22 | nr 1 | 39--57
Tytuł artykułu

Applying Market Basket Analysis to Official Statistical Data

Treść / Zawartość
Warianty tytułu
Analiza koszykowa i jej zastosowania w statystyce publicznej
Języki publikacji
EN
Abstrakty
Analiza koszykowa jako metoda poszukiwania odpowiednich reguł asocjacyjnych jest szeroko wykorzystywana w badaniach marketingowych i w handlu elektronicznym, głównie przez supermarkety czy sklepy prowadzące sprzedaż on-line. Odchodząc od tradycyjnego rozumienia koszyka i zawartych w nim produktów, można zastosować również tę technikę Data Mining w innych obszarach badawczych, w których nie mamy do czynienia z tradycyjnym rozumieniem pojęcia transakcji i produktów nabywanych przez klientów. W artykule przedstawiono teoretyczne aspekty analizy koszykowej i jej egzemplifikację na danych pochodzących z Narodowego Spisu Powszechnego Ludności i Mieszkań 2011 w odniesieniu do stanu cywilnego. Jest to pierwsza tego typu aplikacja dla danych spisowych w Polsce, w których atrybuty koszyka zakupów zastąpiono odpowiednimi cechami demograficznymi osób. Dzięki takiemu podejściu możliwa była identyfikacja reguł opisujących związki między stanem cywilnym prawnym a stanem cywilnym faktycznym przy uwzględnieniu innych podstawowych zmiennych społeczno-demograficznych w dużych zbiorach danych. Wizualizacja uzyskanych reguł asocjacyjnych w programie R na odpowiednich kartogramach w układzie wojewódzkim umożliwiła ponadto przestrzenną analizę zróżnicowania badanego zjawiska.(abstrakt oryginalny)
EN
Market basket analysis, which is a method of discovering co-occurrence relationships, is widely used for the purposes of marketing research and e-commerce, mainly by supermarkets and online stores. Moving beyond the traditional notion of a market basket understood as a fixed list of products, the technique can be applied for data mining in other fields of research which do not involve traditional transactions and purchases made by customers. The following article describes theoretical aspects of market basket analysis with an illustrative application based on data from the National Census of Population and Housing 2011 with respect to marital status. This is the first application of market basket analysis to census data to be conducted in Poland, in which attributes of the market basket have been replaced with respondents' demographic characteristics. This approach makes it possible to identify relationships between legal (de jure) marital status and actual (de facto) marital status, taking into account other basic socio-demographic variables available in large datasets. Using the R software to generate choropleth maps classified by province as a method of visualizing association rules, it was possible to conduct a spatial analysis of the phenomenon of interest.(original abstract)
Rocznik
Tom
22
Numer
Strony
39--57
Opis fizyczny
Twórcy
  • Poznań University of Economics, Poland
  • Statistical Office in Poznań, Poland
  • Statistical Office in Poznań, Poland
Bibliografia
  • Agrawal R., Srikant R., 1994, Fast Algorithms for Mining Association Rules, Proceedings of the 20th VLDB Conference Santiago, Chile.
  • Aguinis H., Forcum L.E., Joo H., 2013, using market basket analysis in management research, Journal of Management, vol. 39, no. 7, pp. 1799-1824.
  • Berry M.J.A., Linoff G.S., 2004, Data Mining Techniques for Marketing, Sales, and Customer Relationship Management (2nd Ed.), Wiley, Indianapolis.
  • Cabena P., Hadjinian P., Stadler R., Verhees J., Zanasi S., 1998, Discovering Data Mining: From Concept to Implementation, Prentice Hall, Upper Saddle River, NJ.
  • Cerrito P.B., 2007, Choice of antibiotic in open heart surgery, Intelligent Decision Technologies, 1, pp. 63-69.
  • Chen Y-L., Kwei T., Shen R-J., Hu Y-H., 2005, Market basket analysis in a multiple store environment, Decision Support Systems, vol. 40, issue 2, pp. 339-354.
  • Frawley W., Piatesky-Shapiro G., Matheus C., 1992, Knowledge Discovery in Databases: An Overview, Al Magazine.
  • GUS, 2003, Ludność. Stan i struktura demograficzno-społeczna, NSP 2002, Warszawa.
  • GUS, 2013, Ludność. Stan i struktura demograficzno-społeczna, Narodowy Spis Powszechny Ludności i Mieszkań, Warszawa, http://stat.gov.pl/download/cps/rde/xbcr/gus/LUD_ludnosc_stan_str_dem_spo_NSP2011.pdf, dostęp: 30.06.2017.
  • Hand D., Mannila H., Smyt P., 2001, Principles of Data Mining, MIT Press, Cambridge, MA.
  • Hahsler M., Chelluboina S., 2011, Visualizing Association Rules: Introduction to the R-extension Package arulesViz.
  • Hsieh S-C., Lai J.-N., Lee C.-F., Hu F.-C., Tseng W.-L., Wang J.-D., 2008, The prescribing of Chinese herbal products in Taiwan: A cross-sectional analysis of the national health insurance reimbursement database, Pharmacoepidemiology and Drug Safety, 17, pp. 609-619.
  • Jaroszewicz Sz., 2008, Cross-selling models for telecommunication services, Journal of Telecommunications and Information Technology, vol. 3, pp. 52-59.
  • Kaur M., Kang S., 2016, Market Basket Analysis: Identify the changing trends of market data using association rule mining, Procedia Computer Science, 85, pp. 78-85.
  • Kaur P., Kanwalpreet S.A., 2014, Data Mining: Review, International Journal of Computer Science and Information Technologies, 5(5), pp. 6225-6228.
  • Kędelski M., Paradysz J., 2013, Demografia, Poznań.
  • Larose D.T., 2005, Discovering Knowledge in Data: An Introduction to Data Mining, Hoboken, Wiley Interscience.
  • Lasek M., Pęczkowski M., 2013, Enterprise Miner. Wykorzystanie narzędzi Data Mining w systemie SAS, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  • Łapczyński M., 2009, Analiza koszykowa i analiza sekwencji - wielki brat czuwa, StatSoft Polska.
  • Package 'arules', 2017, https://cran.r-project.org/web/packages/arules/arules.pdf, dostęp: 9.02.2017, dokumentacja pakietu program R.
  • Package 'arulesViz', 2017, https://cran.r-project.org/web/packages/arulesViz/arulesViz.pdf, dostęp: 9.02.2017, dokumentacja pakietu program R.
  • Raorane A.A., Kulkarni R.V., Jitkar B.D., 2012, Association rule - extracting knowledge using market basket analysis, Research Journal of Recent Sciences, 1(2), pp. 19-27.
  • Roodpishi M.V., Nashtaei R.A., 2015, Market basket analysis in insurance industry, Management Science Letters 5, pp. 393-400.
  • Russell G.J., Petersen A., 2000, Analysis of cross category dependence in market basket selection, Journal of Retailing, 76, pp. 367-392.
  • Yang R., Tang J., Kafatos M., 2007, Improved associated conditions in rapid intensifications of tropical cyclones, Geophysical Research Letters, 34, pp. 1-5.
  • Zhang C., Zhang S., 2002, Association Rule Mining: Models and Algorithms, Springer, Berlin.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171505549

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.