Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 8 | nr 1 | 175--188
Tytuł artykułu

A Model of a Tacit Knowledge Transformation for the Service Department in a Manufacturing Company : a Case Study

Warianty tytułu
Języki publikacji
This article elaborates on the development of a dedicated model of a tacit knowledge transformation for the service department in a manufacturing company. The four main components of the tacit knowledge transformation process are formulated: (1) tacit knowledge source identification, (2) tacit knowledge acquisition, (3) tacit knowledge determination and formalization, and (4) knowledge classification. The proposed model is illustrated by examples on the use of the methods: automatic recognition of speech, natural language processing, and automatic object recognition in the tacit knowledge transformation process in order to obtain a formalized procedure for the service department in a manufacturing company. This is followed by a discussion of the results of the research experiments. (original abstract)
Opis fizyczny
  • University of Applied Science in Nysa
  • University of Zielona Gora, Poland
  • Ali, N., Peebles, D., 2013. Reactivity effects of concurrent verbalisation during a graph comprehension task. In: The annual meeting of the Cognitive Science Society. COGSCI 2013, pp.1720 - 1725.
  • Allal-Chérif, O., Bidan, M. and Makhlouf, M., 2016. Using serious games to manage knowledge and competencies: The seven-step development process. Information Systems Frontiers, pp.1-11.
  • Antonova, A., Stefanov, K., 2011. Applied Cognitive Task Analysis in the Context of Serious Games Development. In: D. Dicheva, ed., et al., 2011. Software, Services & Semantic Technologies. AISC 101, Springer-Verlag Berlin, pp.175-182.
  • Boiman, O., Shechtman, E. and Irani, M., 2008. In defense of nearest-neighbor based image classification, Computer Vision and Pattern Recognition. In: CVPR 2008, IEEE Conference on, IEEE.
  • Boose, J. H., 1989. A survey of knowledge acquisition techniques and tools. Knowledge Acquisition, 1 (1), pp.3-37.
  • Bosch, A., Zisserman, A., Munoz, X., 2007. Image classification using random forests and ferns. In: Computer Vision 2007, ICCV 2007, IEEE 11th International Conference on IEEE.
  • Boyle, E.A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus, M., Ribeiro, C., Pereira, J., 2016. An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94, pp.178-192.
  • Cisco, 2012. 15-Minute Guide to Pulse Video Analytics. Cisco and/or its affiliates.
  • Christoudias, C. M., Urtasun, R., Darrell, T., 2008. Unsupervised feature selection via distributed coding for multi-view object recognition. In: Computer Vision and Pattern Recognition, CVPR 2008, Conference on IEEE.
  • Davis, K. H., Biddulph, R. and Balashek, S., 1952. Automatic Recognition of Spoken Digits. In: Acoustical Society of America.
  • Dudek, A., Patalas-Maliszewska, J., 2016. IT tool for knowledge management support in the service department in the manufacturing company - a case study. In: R. Knosala, ed. Innovation in Management and Production Engineering. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, Vol 2, pp.35-46.
  • Dzwiarek, M., Luczak, A., 2008. Application prospects of the augmented reality technology for improving safety of machine operators. In: INTECH Open Access Publisher.
  • Faust, B., 2007. Implementation of tacit knowledge preservation and transfer methods. In: International Conference on Knowledge Management in Nuclear Facilities. Vienna, Austria.
  • Furui, S., 2005. 50 Years of Progress in Speech and Speaker Recognition Research. ECTI transactions on computer and information technology, 1(2).
  • Gałaj, J., Oleksy, M., 2013. Przegląd hybrydowych modeli pożaru (Overview of the hybrid models of fire). Bezpieczeństwo i Technika Pożarnicza (Safety & Fire Technique), 32 (4).
  • Gonzalez-Franco, M., Cermeron, J., Li, K., Pizarro, R., Thorn, J., Hannah, P. and Bermell-Garcia, P., 2016. Immersive Augmented Reality Training for Complex Manufacturing Scenarios. arXiv preprint arXiv:1602.01944.
  • Gomółka, Z., 2008. Identyfikacja mówcy z wykorzystaniem współczynników predykcji liniowej (The Mechanism of Linear Pprediction in the Task Speaker Identification). Technical News, (2008/1), pp.63-66.
  • Gouet-Brunet, V., Lameyre B., 2008. Object recognition and segmentation in videos by connecting heterogeneous visual features. Computer Vision and Image Understanding, pp.86-109.
  • Gourova, E., Toteva, K. and Todorova Y., 2012. Audit of knowledge flows and critical business processes. In: Proceedings of the 17th European Conference on Pat- tern Languages of Programs (EuroPLoP'12). New York, NY, pp.1-10.
  • Goth, G., 2016. Deep or shallow, NLP is breaking out. In: Communications of the ACM 59.3, pp.13-16.
  • Govaerts, M.J.B., Van de Wiel, M. W.J., Schuwirth, L.W.T., Van der Vleuten, C.P.M., Muijtjens, A.M.M., 2012. Workplace-based assessment: raters' performance theories and constructs. Advances in Health Sciences Education Theory and Practice, 18(3), pp.375-396.
  • Grad, L., 2007. Kompresja stratna dźwięku. In: P. Sienkiewicz, ed., Zeszyt naukowy nr 2 (Scientific notebook number 2). Warsaw: Warszawska Wyższa Szkoła Informatyki (Warsaw School of Computer Science), pp.39-58.
  • Hernes, M., Maleszka, M., Nguyen, N.T., Bytniewski, A., 2015. The automatic summarization of text documents in the Cognitive Integrated Management Information System. In: Computer Science and Information Systems (FedCSIS), Federated Conference on IEEE, pp.1387-1396.
  • Hinton, G., Deng L., Dong, Yu., Dahl, G.E., Abdel-rahman, M., Jaitly, N., Andrew, S., Vanhoucke, V., Nguyen, P., Sainath, T.N. and Kingsbury, B., 2012. Deep Neural Networks for Acoustic Modeling in Speech Recogniction. IEEE Signal processing magazine, pp.82-97.
  • Hoffman, R., Shadbolt, N.R., Burton, M.A., Klein, G., 1995. Elicting Knowledge from Experts: A methodological Analysis. Organization behavior and human decizion processes, 62 (2), pp.129-158.
  • Itakura, F., 1975. Minimum prediction residual applied to speech recognition. In: IEEE Trans. Acoustics, Speech, Signal Proc. ASSP-23 (1), pp.67-72.
  • Jelinek, F., 1985. The development of an experimental discrete dictation recognizer. Proceedings of the IEEE, 73(11), pp.1616-1624.
  • Kambhatla, N., Zitouni, I., 2013. Systems and methods for automatic semantic role labeling of high morphological text for natural language processing applications. U.S. Patent No. 8,527,262.
  • Karkula, M., 2014. Badania symulacyjne procesów transportowych realizowanych w obiektach logistycznych (Simulation Studies of Transport Processes in Logistics Facilities). Logistyka, 4 (2), pp.1971-1980.
  • Kale, R., Bhabad, S.S., 2015. Speech Recognition of Articulatory Handicapped People By Using LPC. International Journal Of Scientific Research And Education, 3 (02), pp.2893-2899.
  • Kompanec, L., Kubanek, M., 2002. Specyfika wykorzystania ukrytych modeli markowa przy rozpoznawaniu mowy polskiej (The specificity of the use of hidden Markov models using speech recognition Polish). Informatyka Teoretyczna i Stosowana, 2 (3), pp.45-56.
  • Kwasek, A., 2016. IT Tools Used in the Management of New Model of Economy, the Knowledge-Based Economy. Kwartalnik Naukowy Uczelni Vistula, 1 (47), pp.94-108.
  • Lee, T., Soatto, S., 2011. Video-based descriptors for object recognition. Image and Vision Computing, 29 (10), pp.639-652.
  • Lazebnik, S., Schmid, C. and Ponce, J., 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Computer Vision and Pattern Recognition. 2006 IEEE Computer Society Conference.
  • Lemke, J., 2012. Analyzing Verbal Data: Principles, Methods, and Problems. In: Springer International Handbooks of Education. The Netherlands: Springer, pp.1471-1484.
  • Leśnik, M., Dobrowolski D., 2016. Zarządzanie wiedzą jako proces. In: R. Knosala ed., 2016. Innowacje w zarządzaniu i inżynierii produkcji. Opole: Wyd. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, pp.85-96.
  • Li, F.-F., Perona, P., 2005. A bayesian hierarchical model for learning natural scene categories. In: Computer Vision and Pattern Recognition, CVPR 2005, IEEE Computer Society Conference.
  • Lin, T.J., Duh, H.B.L., Li, N., Wang, H.Y. and Tsai C.C., 2013. An investigation of learners' collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, pp.314-321.
  • Lundy, J., 2016. Hot Vendors in Enterprise Video. Aragon Research, 12.
  • Mermon, A., 2011. Sieci Bayesa w rozpoznawaniu mowy (Bayes networks used in application to speech signal recognition). Pomiary automatyka Robotyka, 12/2011.
  • Mietła, A., Iwaniec M., 2010. Praktyczne aspekty wykorzystywania systemów rozpoznawania mowy opartych na HMM. Modelowanie Inżynierskie - Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej, 9 (40), pp.171 - 178.
  • Nonaka, I., Takeuchi H., 2000. Kreowanie wiedzy w organizacji (Creating knowledge in the organization). Warszawa: Poltext.
  • Pa, N. C., Taheri, L. and Abdullah, R., 2012. A Survey on Approaches in Knowledge Audit in Organization. Asian Transaction on Computers, 2 (5), pp.1-8.
  • Pawlaczyk, L., Bosky, P., 2009. Skrybot - A System for Automatic Speech Recognition of Polish Language. Man-Machine Interactions in Advances in Intelligent and Soft Computing, 59, pp.381-387.
  • Piotrowska, A., 2012. Wiedza jawna i niejawna jako zasób decyzyjny w zarządzaniu personelem (Explicit and implicit knowledge as a resource decision-making in personnel management). In: A. Grzegorczyk ed., Procesy decyzyjne w warunkach niepewności. Warszawa: Wyższa Szkoła Promocji, pp.79-95.
  • Przepiórkowski, A., Bańko, M., Górski R. and Lewnadowska-Tomaszczyk B., 2012. Narodowy Korpus Języka Polskiego (National Corpus of Polish Language). Warszawa: Wydawnictwo Naukowe PWN.
  • Przybysz, P., Kasprzak, W., 2012. Rozpoznawanie zdań w sygnale mowy z wykorzystaniem modelu HMM (Recognition of sentences in the speech signal using HMM model). Raport IAiIS PW Nr 12-05, Warszawa.
  • Ptocoki, A., Łukasik, P., 2014. Wybrane metody komunikacji ukierunkowane na wykorzystanie wiedzy w organizacji (Selected methods of communication directed to the use of knowledge in the organization). In: A. Stabryła, S. Wawak, ed., 2014. Problemy zarządzania organizacjami w społeczeństwie informacyjnym. Kraków: Mfiles.
  • Rabiner, L., Juang, B. H., 1993. Fundamentals of speech recognition. New York: Prentice Hall, Englewood Cliffs.
  • Ragsdell, G., Probets S. and Ahmed G., 2013. Knowledge audit: findings from a case study in the energy sector. In: 14th European Conference on Knowledge Management. Kaunus University of Technology, Lithuania, 5-6 September 2013, pp.584-593.
  • Salmon, K., Pipe, M. E., Malloy, A. and Mackay, K., 2012. Do Non-Verbal Aids Increase the Effectiveness of 'Best Practice' Verbal Interview Techniques? An Experimental Study. Applied Cognitive Psychology, 26 (3), pp.370-380.
  • Seager, W., Ruskov, M., Sasse, M.A. and Oliveira, M., 2011, Eliciting and modelling expertise for serious games in project management. Entertainment Computing, pp.75-80.
  • Słownik języka polskiego (Polish dictionary). [online] Available at: [Accessed: 10 June 2016].
  • Shomali, A., Kapusta, M. and Gajer, M., 1999. Zastosowanie niejawnych modeli Makowa w systemach automatycznego rozpoznawania mowy (The use of HMM in automatic speech recognition). Elektrotechnika i Elektronika, pp.89-99.
  • Unikkon Integral Sp. z o.o., 2013. O MagicScribe. [online] Available at: [Accessed: 13 May 2016].
  • Yang, J., Yu K., Gong Y., Huang, T., 2009. Linear spatial pyramid matching using sparse coding for image classification. In: Computer Vision and Pattern Recognition Conference.
  • Yusoff, N.M., Salim, S.S., 2012. Investigating cognitive task difficulties and expert skills in e-Learning storyboards using a cognitive task analysis technique. Computers & Education, (58), pp.652-665.
  • Wyrębek, H., 2013. Zarządzanie wiedzą w organizacjach zhierarchizowanych (Knowledge management in hierarchical organizations), Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego, 96, pp.51-53.
  • Yang, J., Yu, K., Gong, Y. and Huang, T., 2009. Linear spatial pyramid matching using sparse coding for image classification. In: Computer Vision and Pattern Recognition Conference.
  • Yang, Y., Liu, X., 1998. A re-examination of text categorization methods. In: ACM SIGIR Conference on Research and Development in Information Retrieval. New York.
  • Zieliński, M., 2015. Personalne warunki tworzenia inteligentnej organizacji (Personnel conditions of creation of intelligent organization). Scientific Papers of Silesian University of Technology, 86 (1946).
  • Ziółkowski, S., 2015. Organizacje przyszłości. Wyzwania dla zarządzania wiedzą w sieciach (Organizations future. Challenges for knowledge management networks). Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 224.
  • Zweig, G., Russell, S., 1998. Speech Recognition with Dynamic Bayesian Networks. AAAI-98 Proceedings.
  • Żelazko, P., Ziółko, B., Jadczyk, T. and Skurzok, D., 2015. AGH corpus of Polish speech. Lang Resources & Evaluation, early access.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.