PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | nr 1 | 265--290
Tytuł artykułu

Dematerialised and Re-dematerialised Economy - 3D Printing as a Key Technological and Environment-Friendly Innovation

Autorzy
Warianty tytułu
Zdematerializowana i re-zdematerializowana gospodarka - druk 3D jako kluczowa innowacja technologiczna przyjazna dla środowiska
Języki publikacji
EN
Abstrakty
EN
The development of 3D printing enables the process of direct transfer of ideas (understood as digital vectors) into physical objects using only one universal device. Later these objects could be milled and the same material reused, allowing ideas for effective re-materialisation and de-materialisation done by individual consumers who become producers. New goods could be adjusted by consumers to their individual preferences as it was in the preindustrial craft era. A process of re-localisation of de-localised production from low paid labour countries to developed ones will be observed with spatial distribution. This new order could be named re-de economy. Expiration of key patents that protected 3D technologies between 2014 and 2016 will affect the spread of these new order consequences. The article also presents an analysis of 217 students' opinions collected in selected countries (Hungary, Italy, Lithuania, Poland, South Africa, Sweden and Ukraine) regarding their attitude to this technology. (original abstract)
Rozwój technologii druku 3D umożliwia proces bezpośredniej zamiany idei (rozumianych jako wektory cyfrowe) w obiekty fizyczne przy użyciu tylko jednego uniwersalnego urządzenia. Obiekty te mogą następnie zostać przetworzone za pomocą procesu mielenia i przyjąć nową formę przy wykorzystaniu tego samego materiału. Daje to możliwość re-materializacji i dematerializacji wykonywanej przez indywidualnych konsumentów, którzy stają się jednocześnie producentami. Nowe towary mogą być dostosowywane przez konsumentów do ich indywidualnych preferencji, tak jak to było w erze przedprzemysłowej. Ten nowy porządek można nazwać relokalizacją zdematerializowanej produkcji z krajów o niskich kosztach wytwarzania do państw wysokorozwiniętych. Wygaśnięcie kluczowych patentów chroniących technologie 3D w okresie od 2014 do 2016 r. wpłynie na rozprzestrzenianie się następstw nowego porządku. W artykule przedstawiono również analizę 217 opinii studentów w wybranych krajach (Węgry, Włochy, Litwa, Polska, RPA, Szwecja i Ukraina) dotyczących ich stosunku do technologii druku 3D. (abstrakt oryginalny)
Rocznik
Numer
Strony
265--290
Opis fizyczny
Twórcy
  • Cracow University of Economics, Cracow, Poland
Bibliografia
  • Andrews, D. (2015). The Circular Economy, Design Thinking and Education for Sustainability, Local Economy Sage Publications, 30(3), 305-315.
  • Ayres, R.U. (1989). Industrial metabolism. In: J. Ausubel & H. Sladovich (Eds.), Technology and Environment, Washington, DC: National Academy Press, pp. 23-49.
  • Benkler, Y. (2006). The Wealth of Networks: How Social Production Transforms Markets and Freedom. New Haven: Yale University Press.
  • Buciuni, G. Coro, G. Micelli, S. (2014). Rethinking the role of manufacturing in global value chains: an international comparative study in the furniture industry, Industrial and Corporate Change, 23(4), 967-996.
  • Carolan, M.S. (2004). Ecological Modernization theory: what about consumption?, Society & Natural Resources, 17(3), 247-60.
  • Cobb, C. and Cobb J.B. (1994). The green national product: A proposed index of sustainable economic welfare, Lanham, MD: University Press of America.
  • Defining defining: The creative industry of definition, Editorial., (2013). Creative Industries Journal, 6(2), 83-87.
  • Despeisse, M.; Baumers, M.; Brown, P.; Charnley, F.; Ford, S. J. Garmulewicz, A.; Knowles, S.; Minshall, T.H.W.; Mortara, L., Reed-Tsochas, F.P.; Rowley, J.; (2017). Unlocking value for a circular economy through 3D printing: A research agenda, Technological Forecasting and Social Change, 115, 75-84.
  • Dosi, G. (1982). Technical Paradigms and Technological Trajectories: A Suggested Interpretation of the Determinants of Technical Change, Research Policy, 2(3), 147-62.
  • Dosi, G. (1984). Technical Change and Industrial Transformation - The Theory and an Application to the Semiconductor Industry, London: Macmillan.
  • Dosi, G. (2005). Statistical regularities in the Evolution of Industries. A Guide through some Evidence and Challenges for the Theory, LEM Working Paper, 17, June.
  • Environment Agency Japan. (1992). Quality of the environment in Japan. Tokyo.
  • Eurostat, (2002). Material use in the European Union 1980-2000: Indicators and analysis, Eurostat, Luxembourg: Office for Official Publications of the European Communities.
  • Freeman, C. (1994). Technological Revolutions and Catching-Up: ICT and the NICs. In: J. Fagerberg, B. Verspagen & von Tunzelmann, N. (Eds.), The Dynamics of Technology, Trade and Growth. Aldershot: Edward Elgar.
  • Frey, C.B. and Osborne, M.A. (2013). The future of employment: how susceptible are jobs to computerisation? Oxford University (September).
  • Garmulewicz, A.; Holweg, M.; Veldhuis, A. J.; Yang, A., (2016). Disruptive technology as an enabler of the circular economy: What potential does 3D printing hold?, Working paper based on 3DP-RdM Feasibility Study.
  • Ghosh, A. (2015). The big push for renewable energy in India: What will drive it?, Bulletin of the Atomic Scientists, 71(4), 31-42.
  • Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Weisz, H. and Winiwarter, V. (2004). Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer, Land Use Policy, 21(3), 199-213.
  • Hellström, T. (2007). Dimensions of Environmentally Sustainable Innovation: the Structure of Eco-Innovation Concepts, Sustainable Development, 15, 148-159.
  • Høyer, K.G.; Næss, P. (2001). The ecological traces of growth: economic growth, liberalization, increased consumption-and sustainable urban development?, Journal of Environmental Policy & Planning, 3 (3), 177-92.
  • Jones, C.; Lorenzen, M. and Sapsed J. (2015). Creative Industries: A Typology of Change. In: C. Jones, M. Lorenzen & J. Sapsed, (Eds.), The Oxford Handbook of Creative Industries. Oxford: Oxford University Press.
  • Katz, L.F. and Margo, R.A. (2014). Technical change and the relative demand for skilled labor: The United States in historical perspective. Tech. Rep., NBER Working Paper No. 18752, National Bureau of Economic Research.
  • Keynes, J.M. (1963) [1933]. Economic possibilities for our grandchildren (1930). In: J.M. Keynes, Essays in persuasion. New York: W.W. Norton & Co.
  • Kondratieff N. (1984) [1925]. Long Wave Cycle. E P Dutton.
  • Kostakis, V.; Fountouklis, M.; Drechsler, W. (2013). Peer Production and Desktop Manufacturing: The Case of the Helix_T Wind Turbine Project, Science, Technology & Human Values. Nov, 38 (6), 773-800.
  • Mamica, Ł. (2014). Added value of design as a factor of firms' competiveness in times of crisis. In: Ł. Mamica & P. Tridico, (Eds.), Economic Policy and the Financial Crisis. London/New York: Routledge.
  • Matsumoto, M.; Yang, S., Martinsen, K.; Kainuma, Y. (2016). Trends and Research Challenges in Remanu-facturing, International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 129-142.
  • Meadows, D.; Randers, J. and Behrens, W.W. (1972). The limits to growth, New York: Universe Books.
  • Minsky, H. (1996). Uncertainty and the Institutional Structure of Capitalist Economies, Jerome Levy Institute, Working paper No. 155.
  • Nedelkoska, L. (2013). Occupations at risk: job tasks, job security, and wages, Industrial & Corporate Change, 22(6), 1587-1628.
  • Olabi, A. G. (2014). 100% sustainable energy, Energy, 77(1), 1-5.
  • Pearce, J.M. (2012). Building Research Equipment with Free, Open-Source Hardware, Science, 337(6100), 1303-1304.
  • Perez, C. (2002). Technological Revolutions and Financial Capital. The Dynamics of Bubbles and Golden Ages. Cheltenham - Northampton, MA: Edward Elgar.
  • Perez, C. (2009). Technological Revolutions and techno-economic paradigms, Working Papers in Technology Governance and Economic Dynamics no. 20, The Other Canon Foundation, Norway and Tallinn University of Technology, Tallinn.
  • Rennings, K. (2000). Redefining innovation - eco-innovation research and the contribution from ecological economics, Ecological Economics, 32, 319-332.
  • Rifkin, J. (2011). The Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World . New York: Palgrave Macmillan.
  • Rodrigues, J.; Domingos T.; Conceicao P.; Belbute J. (2005). Constraints on dematerialisation and allocation of natural capital along a sustainable growth path, Ecological Economics, 54, 382-96.
  • Sachs, J.D.; Benzell, S.G.; LaGarda, G. (2015). Robots: curse or blessing? A basic framework, Working Paper 21091, April, Cambridge, MA, National Bureau of Economic Research.
  • Savona, M.; Steinmueller, W.E. (2013). Service output, innovation and productivity: A time-basedconceptual framework, Structural Change and Economic Dynamics, 27, 118- 132.
  • Schandl, H.; Turner, G.M. (2009). The Dematerialization Potential of the Australian Economy, Journal of Industrial Ecology, 13(6), 863-880.
  • Schor, J.B. (1998). The overspent American. Why they want what they don't need, New York: Harper Collins.
  • Schumpeter J.A. (2003) [1943]. Capitalism, socialism, and democracy. London, New York: Routledge.
  • Soros, G. (2002). Report on Globalization. New York: PublicAffairs.
  • Steurer, A. (1992). Stoffstrombilanz Österreich, 1988. Schriftenreihe Soziale Ökologie. No. Band 26, IFF/Abteilung Soziale Ökologie, Wien.
  • Stiglitz, J. (2001). Whither Reform? - Ten Years of Transition. In: H.J. Chang (ed.), The Rebel Within, London: Anthem.
  • Sun, J.W. (2001). Energy demand in the fifteen European Union countries by 2010: a forecasting model based on the decomposition approach, Energy, 26(6), 549-60.
  • Toffler, A. (1980). The Third Wave. New York: Bantam Books.
  • Toffler, A. (1990). Powershift, knowledge, wealth, and violence at the edge of the 21st century. New York: Bantam Books.
  • Veblen, T. (1899). The theory of the leisure class: an economic study of institutions. New York, London: Macmillan.
  • Vezzoli, C.; Ceschin, F.; Diehl, J.; Kohtala, C. (2015). New design challenges to widely implement 'Sustain-able Product-Service Systems'. Journal of Cleaner Production, 97, 1-12.
  • Vollebergh, H.R.J.; Werf, E. (2014). The Role of Standards in Eco-innovation: Lessons for Policymakers, Review of Environmental Economics & Policy. July, 8(2), 230-248.
  • Weizsacker, E.U. Lovins, A.B. and Lovins, H.L. (1997). Factor Four Doubling Wealth-alving Resource Use: The New Report to the Club of Rome. London: Earthscan.
  • Weisz, H.; Krausmann, F.; Amann, C.; Eisenmenger, N.; Erb, K.-H.; Hubacek, K.; Fischer-Kowalski, M. (2006). The physical economy of the European Union: Cross-country comparison and determinants of material consumption, Ecological Economics, 58(4), 676-698.
  • Wohlers Report. (2015). 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, Wohlers Associates.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171520043

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.