PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr 17 | 87--93
Tytuł artykułu

Phytotechnologies with Biomass Production as a Sustainable Solution for Military Land Revitalization

Treść / Zawartość
Warianty tytułu
Fitotechnologia z produkcją biomasy jako zrównoważone rozwiązanie pozwalające na rewitalizację zanieczyszczonych terenów wojskowych
Języki publikacji
EN
Abstrakty
EN
The military sites polluted by heavy metals, oil and degraded organic products constantly pose health risks and negatively affect soil, water resources and biodiversity. The prospective approach for sustainable land management of these localities is a green technology based on phytoremediation combined with the production of biomass that allows to restore marginal land to the agricultural or urban land bank and to obtain profits from processed bioproducts. The main goal of this paper is to present the results on using the second generation biofuel crop Miscanthusxgiganteus for the revitalization of the former military sites in Ukraine, the Czech Republic and the US using such an approach. The results of laboratory experiments and two years' field research proved the prospects of the phytotechnology and calls for further investigation related to economic value chain and behaviour aspects.(original abstract)
Tereny wojskowe zanieczyszczone metalami ciężkimi, olejami i produktami prowadzącymi do ekologicznej degradacji stale stanowią zagrożenie dla zdrowia i negatywnie wpływają na glebę, zasoby wodne i różnorodność biologiczną. Perspektywicznym podejściem do zrównoważonego zarządzania gruntami w tych miejscach jest fitotechnologia z produkcją biomasy miscanthus, która pozwala na przywrócenie gruntów brzegowych do puli terenów rolniczych lub miejskich, a jednocześnie na zaspokojenie zapotrzebowania na alternatywne źródła energii. Wyniki trwających dwa lata badań nad wykorzystaniem miscanthusa do przywrócenia do użytku byłych terenów wojskowych na Ukrainie, w Czechach i Stanach Zjednoczonych potwierdziły przyszłe perspektywy dla tej technologii i nakłoniły do dalszych badań nad wartościami ekonomicznymi i zastosowaniem zasad ekonomii behawioralnej.(abstrakt oryginalny)
Rocznik
Numer
Strony
87--93
Opis fizyczny
Twórcy
  • Jan Evangelista Purkyne University, Czech Republic
  • Kansas State University, USA
  • National University of Life and the Environmental Science
  • Jan Evangelista Purkyně University in Ústí nad Labem, Czech Republic
  • Kansas State University, USA
Bibliografia
  • Biomass Action Plan, 2005, COM 628.
  • Brosse N., Dufour A., Meng X.Z., Sun Q.N., Ragauskas A., 2012, Miscanthus: A fast-growing crop for biofuels and chemicals production, Biofuels Bioproducts & Biorefining-Biofpr, vol. 6(5), pp. 580-598.
  • Conesa H.M., Evangelou M.W.H., Robinson B.H., Schulin R., 2012, A critical view of current state of phytotechnologies to remediate soils: still a promising tool?, Scientific World Journal, 173829.
  • Daraban A.E., Jurcoane S., Viocea L., Voicu G., 2015, Miscanthus giganteus biomass for sustainable energy in small scale heating systems, Agriculture and Agricultural Science Procedia, vol. 6, pp. 538-544.
  • Dornburg V., Faaij A.P.C., 2005, Cost and CO2 - emission reduction of biomass cascading: methodological aspects and case study of SRF poplar, Climate Change, vol. 71, pp. 373-408.
  • Erickson L., Pidlisnyuk V., Trögl J., Shapoval P., Popelka J., Davis L., Stefanovska T., Hettiarachchi G., 2017, Perennial phytotechnology with biomass production for abandoned military site in Sliač, Slovakia. Proc. of International conference " Chemical technology and engineering ", Lviv, Ukraine, Published by: Lvivska Politekhnika, pp. 282-283.
  • Europe 2020: A European Strategy for smart, sustainable and inclusive growth, 2012, COM (2010).
  • Green Paper. A European Strategy for Sustainable, Competitive and Secure Energy, 2006, COM, 105.
  • Guidelines for Behavioral Change Programmers, 2009, Changing energy behavior, edited by IDEA, Published by: Instituti para la Deversificacion y Ahorro de la Energia, Spain, 96.
  • Haemers J., 2009, Sustainable remediation: how to compare the technologies?, Green Remediation Conference, Copenhagen, Denmark, pp. 7-9.
  • Hettiarachchi G., Alasmary Z., Roozeboom K., Davis L., Erickson L., Pidlisnyuk V., Stefanovska T., Nurzhnova A., Trogl J., 2017, Field-based investigations on phytostablization of a contaminated military site using biofuel crop growth assisted with soil amendments, Proc. of 14th International Phytotehnologies Conference. Phytotechnologies: New Sustainable Solution for Environmental Challenges, Montreal, Canada.
  • Kalinina O., Thumm U., Lewandowski I., 2016, Miscanthus-complemented Grassland in Europe: Additional Source of Biomass for Bioenergy, [in:] Perennial Biomas Crop for a Resources Constrained World, eds. S. Barth, D. Murphy-Bokern, O. Kalinina, G. Taylor, M. Jones, Springer Nature Switzerland AG, pp. 51-63.
  • Kharchenko M., Pidlisnyuk V., Stefanovska T., Production of Miscanthusxgiganteus biomass at the abandoned industrial soil for further use at the paper industry, Studia Biologica, vol. 11/3-4, pp. 98-99.
  • Kocon A., Matyka M., 2012, Phytoextractive potential of Miscanthus giganteus and Sida hermaphrodita growing under moderate pollution of soil with Zn and Pb, Journal of Food, Agriculture & Environment, vol. 10, pp. 1253-1256.
  • Lewandowski I., Schmidt U., Londo M., Faaij A., 2006, The economic value of the phytoremediation function-assessed by the example of cadmium remediation by willow (Salix ssp), Agricultural Systems, vol.89(1), pp. 68-89.
  • Los L.V., Zinchenko L.V., Zajvoronovskyi V.P., 2011, Growing and gasification of biofuels as effective direction for solving energetic and ecological problems: case of Miscanthus gigantheus, Release of Zytomir National Agroecological University, vol. 29, part 1, pp. 46-57 (in Ukrainian).
  • Marmiroli N., McCutcheon S.C., 2003, Making Phytoremediation a Successful Technology, [in:] Phytoremediation. Transformation and Control of Contaminats, eds S. C.McCutcheon, J.L. Scxhnoor, published by: Wiley-Interscience.A John Wiley&Sons, Inc. Publication, pp. 85-119.
  • Ministry of Ecology and Natural Resources of Ukraine, 2012, Enriched five-years report regarding land desertification and erosion, www.menr.gov.ua/Zvit5rokOpus2013.doc (in Ukrainian).
  • Nsanganwimana F., Pourrut B., Mench M., Douay F., 2014, Suitability of miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review, Journal of Environmental Management, vol. 143, pp. 123-134.
  • Nurzhanova A., Pidlisnyuk V., Kalugin S., Stefanovska T., Drimal M., 2015, Miscanthusxgiganteus as a new highly efficient phytoremediation agent for improving soils contaminated by pesticides residues and supplemented contaminants, Communications in Agricultural and Applied Biological Sciences, 80(3), pp. 361-366.
  • Pidlisnyuk V., Erickson L., Kharchenko S., Stefanovska T., 2014b, Sustainable Land Management: Growing miscanthus in soils contaminated with heavy metals, Journal of Environmental Protection, Special Issue in Environmental Remediation, vol. 5, pp. 723-730.
  • Pidlisnyuk V., Stefanovska T., Lewis E., Erickson L., Davis L., 2014a, Miscanthus as a productive biofuel crop for Phytoremediation, Critical Review on Plant Science, vol. 32(1), pp. 1-16.
  • Pidlisnyuk V., Stefanovska T., Shapoval P., 2016, Developing perennial phytotechnology for contaminated military site: case of Kamenetz-Podilsky, Ukraine, Proc. of the International Conference Contaminated Sites, Bratislava, Slovakia, pp. 124-132.
  • Pidlisnyuk V., Zagirnyak M., Jilkova J., 2013, Strategy of Sustainable Development and Climate Change, Zsherbatux Publishing, Kremenchug, Ukraine (in Ukrainian). Remediated Sites and Brownfields, 2015, A report of the European Information and observation Network's National Reference Centers for Soil (Eionet NRC Soil), eds. A. Perez, S. Sanchez, M. Liedekerke. Published by IRC.
  • Rock S.A., 2003, Field Evaluation of Phytotechnologies, [in:] Phytoremediation. Transformation and Control of Contaminants, eds S. C. McCutcheon, J.L. Scxhnoor, Wiley-Interscience. A John Wiley& Sons, Inc. Publication, pp. 905-924.
  • Rosillo-Calle F., de Groot P., Hemstock S.L., Woods A. (eds), 2006, The Biomass Assessment Handbook: Bioenergy for a Sustainable Environment, J. Earth Scan Publications Ltd., London.
  • Soubi A., Louvel B., Douay F., Porrut B., 2017, Assessment of Miscanthus x giganteus capacity to restore the functionality of metal-contaminated soils: Ex situ experiment, Applied Soil Ecology, vol. 7.
  • Techer D., Martinez-Chois C., Laval-Gilly P., Henry S., Bennasroune A., D'Innocenzo M., Falla J., 2012, Assessment of Miscanthus x gigantheus for rhizoremediation of long term PAH contaminated soils, Applied Soil Ecology, vol. 62, pp. 42-49.
  • Van-Camp L., Bujarrabal B., Gentile A.-R., Jones R.J.A., Montanarella L., Olazabal C., 2004, Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection, [in:] Contaminated Land Management, vol. 4, European Commission, Luxembourg .
  • Vegter J.J., 2001, Sustainable contaminated land management approach, Land Contamination and Reclamation, vol. 9, pp. 95-100.
  • Wagner M., Kiesel A., Hastings A., Iqbal Y., Lewandowski I., 2017, Novel Miscanthus germplasm-based value chains: a life cycle assessment, Frontiers in Plant Science.
  • Witters N., Mendelsohn R.O., Van Slycken S., Weyens N., Schreurs E., Meers E., Tack F., Carleer R., Vangronsveld J., 2012, Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement, Biomass and Bioenergy, vol. 39, pp. 454-469.
  • www.epa.gov/superfunds/sites/npl/index.htm,2017 and https://www.epa.gov/brownfields.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171523333

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.