Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 12 | nr 3 | 253--267
Tytuł artykułu

Implementation-Neutral Causation in Structural Models

Treść / Zawartość
Warianty tytułu
Języki publikacji
Analysts associated with the Cowles Commission attached great importance to the distinction between structural and reduced-form models: in their view structural models, but not reduced-form models, allow the analysis of causal relations. They did not present clear justification for this view. Here we show that this insight is correct, and make the demonstration of it precise. Causal relations are shown to depend on parameter restrictions that are explicit in the structural form, but not in the reduced form when the coefficients are interpreted as unrestricted constants. The requisite parameter restrictions are those associated with implementation-neutral causation. A graphical procedure is outlined that identifies causal orderings and also the ordering based on implementation-neutral causation. The same procedure applied to reduced form models produces the implementation neutral causal ordering only if the parameter restrictions are explicitly incorporated in the reduced form. The analysis is applied in investigating the validity of the causal Markov condition. (original abstract)
Opis fizyczny
  • University of California, Santa Barbara, USA
  • Angrist, J. D., & Pischke, J. S. (2015). Mastering 'Metrics: The Path from Cause to Effect. Priceton, NJ: Princeton University Press.
  • Elwert, F. (2013). Graphical causal models. In: Morgan, S. L. (Ed.), Handbook of causal analysis for social research (pp. 245-273). Dordrecht: Springer.
  • Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica, 11(1), 1-12.
  • Hausman, D. M., & Woodward, J. (1999). Independence, invariance and the causal Markov condition. The British Journal of the Philosophy of Science, 50(4), 521-583.
  • Heckman, J. (2005). The scientific model of causality. Sociological Methodology, 35, 1-97.
  • Heckman, J., & Pinto, R. (2013, September 25). Causal analysis after Haavelmo (Working Paper No. 19453). Bureau of Economic Research. Retrieved from
  • Hurwicz, L. (1962). On the structural form of interdependent systems. In: E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and the philosophy of science (pp. 232-239). Standford, CA: Stanford University Press.
  • LeRoy, S. F. (2016). Implementation neutrality and causation. Economics and Philosophy, 32, 121-142.
  • LeRoy, S. F. (2018). Implementation neutrality and treatment evaluation. Economics and Philosophy, 34(1), 45-52.
  • Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge, UK: Cambridge University Press.
  • Pearl, J. (2015). Trygve Haavelmo and the emergence of causal calculus. Econometric Theory, 31, 152-179.
  • Simon, H. A. (1953). Causal ordering and identifiability. In: W. C. Hood, & T. C. Koopmans (Eds.), Studies in Econometric Method, Cowles Commission for Research in Economics Monograph No. 14 (pp. 49-74). New York, NY: John Wiley and Sons, Inc.
  • Simon, H. A. (1954). Spurious correlation: A causal interpretation. Journal of the American Statistical Association, 49, 467-479.
  • Spirtes P., Glymour, C., & Scheines, R. (1993). Causation, prediction and search (2nd ed.). New York, NY: Springer-Verlag.
  • Wermuth, N. (1992). On block-recursive regression equations. Brazilian Journal of Probability and Statistics, 6, 1-56.
  • Wold, H. O. (1954). Causality and econometrics. Econometrica, 22, 162-177.
  • Woodward, J. (2007). Causation with a human face. In: H. Price, R. Corry (Eds.), Causation, physics and the constitution of reality (pp. 66-105). New York, NY: Oxford University Press.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.