PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | nr 3 | 1043--1057
Tytuł artykułu

Biogas Production from the Perspective of Sustainable Development

Treść / Zawartość
Warianty tytułu
Produkcja biogazu w aspekcie zrównoważonego rozwoju
Języki publikacji
EN
Abstrakty
Podstawowymi kierunkami polityki zrównoważonego rozwoju jest inwestowanie w tzw. "zielone" technologie służące do wytwarzania energii pochodzącej ze źródeł odnawialnych. Do nich zaliczyć można biomasę, która przetworzona w procesie fermentacji metanowej może generować biogaz wykorzystywany do celów energetycznych, a mianowicie do produkcji ciepła i energii elektrycznej. Biogazownie już od kilku lat są obecne na polskim rynku produkcji energii. Wg GUS [lit] w 2014 roku w strukturze pozyskiwania energii pierwotnej ze źródeł odnawialnych w Unii Europejskiej biogaz stanowi 7,6%, a w Polsce 2,6%. Istotnym aspektem produkcji biogazu jest wykorzystanie surowców odpadowych z produkcji rolniczej i przemysłu spożywczego m.in. gnojowicy, odpadów poubojowych, wywarów gorzelnianych i in. Działanie biogazowi daje szereg korzyści dla środowiska m.in. na drodze kontrolowanego procesu fermentacji i jego wykorzystania do produkcji energii, umożliwia ograniczenie emisji metanu i innych gazów cieplarnianych. Redukcja ilości odpadów, ochrona środowiska, wypełnianie zobowiązań unijnych i bezpieczeństwo energetyczne potwierdzają, że warto aby gminy w Polsce zainteresowały się możliwym do pozyskania biogazem. W artykule przedstawiono analizę SWOT produkcji biogazu w kontekście zrównoważonego rozwoju. Ocenę czynników (mocnych i słabych stron, szans i zagrożeń) oraz ich intensywność oddziaływania dokonano przy zastosowaniu autorskich skal punktowych. Przeprowadzona analiza wykazała, że proces ma wiele mocnych stron, które mogą przyczynić się do pozytywnych zmian w kontekście środowiskowym i społecznym na szczeblu lokalnym. (abstrakt oryginalny)
EN
One of the basic aspects of sustainable development strategy involves investments in green technologies, including energy production from renewable sources. Biomass, special organic waste which belongs to "green sources" of energy can be used in the methane fermentation process of biogas production to generate heat and electricity. Biogas power plants have functioned in the Polish energy industry for many years now. On the basis of the data available from Central Statistical Office, in 2014 the ratio of biogas accounted for 7.6% of the structure of primary energy derived from renewable sources in the EU and 2.6% in Poland. An important consideration related to the production of biogas is associated with the applicability of waste resources derived from agricultural production and from the food industry, including pig slurry, slaughterhouse waste, brewing and distilling dregs as well as others. The operation of biogas plants provides considerable benefits to the environment, resulting from the controlled fermentation process and its application in the production of useful energy, as it can provide reduction of the emission of methane and other greenhouse gases. The aspects including the reduction of the volume of waste, environmental protection, fulfillment of the EU obligations and local energy security, form the reasons why communes in Poland should focus their attention on the use of biogas. This paper presents the results of SWOT analysis of biogas production in the context of sustainable development. The assessment of the aspects (strengths, weaknesses, opportunities and threats) and the intensity of their impact were undertaken on the basis of a point scale developed by the authors. The analysis shows that the process demonstrates a number of strengths, which can promote the implementation of positive changes in the environmental and social aspects undertaken on a local scale. (original abstract)
Słowa kluczowe
Rocznik
Numer
Strony
1043--1057
Opis fizyczny
Twórcy
  • Technical University of Opole, Poland
  • Technical University of Opole, Poland
Bibliografia
  • Akbas, H.; Bilgen, B.; Turhan, A. M., (2015). An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Bioresource Technology 196: 566-576.
  • Budzianowski, W.M.; Chasiak, I.(2011). The expansion of biogas fuelled power plants in Germany during the 2001-2010 decade: Main sustainable conclusions for Poland. Journal of Power Technologies 91(2): 102-113. Available at: http://papers.itc.pw.edu.pl/index.php/JPT/article/viewFile/246/422. Accessed 20 December 2017.
  • Budzianowski, W.M. (2012). Sustainable biogas energy in Poland: Prospects and challenges. Renewable and Sustainable Energy Reviews 16(1): 342-349.
  • Cao, X.; Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology 101: 5222-5228.
  • Chen, W.-M.; Kim, H.; Yamaguchi, H.(2014). Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 74: 319-329.
  • Curkowski, A.; Oniszk-Popławska, A. (2010). Surowce do produkcji biogazu - uproszczona metoda obliczeniowa wydajności biogazowni rolniczej. Czysta Energia 1.
  • Główny Urząd Statystyczny (GUS) (2016). Energia ze źródeł odnawialnych w 2015 roku. Warszawa: GUS. Available at: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2015-roku,3,10.html. Accessed 3 January 2018
  • Igliński, B.; Buczkowski, R.; Iglińska, A.; Cichosz, M.; Piechota, G.; Kujawski, W. (2012). Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renewable and Sustainable Energy Reviews 16(7): 4890-4900.
  • Igliński, B.; Buczkowski, R.; Iglińska, A.; Cichosz, M.; Plaskacz-Dziuba, M. (2015). SWOT analysis of the renewable energy sector in Poland. Case study of Wielkopolskie region. Journal of Power Technologies 95(2): 143-157.
  • Inyang, M.; Gao, B.; Pullammanappallil, P., Ding, W.; Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology 101: 8868-8872.
  • Kaszubska, M.; Wzorek, M. (2017). The Bioreactor - an Innovative Method of Disposal of Solid Waste. Economic and Environmental Studies 17(2): 347-361. Available at: http://www.ees.uni.opole.pl/content/02_17/ees_1 7_2_fulltext_12.pdf. Accessed 20 December 2017.
  • Koziar, M. (2017). Analiza SWOT. Available at: http://www.jaknapisac.com/analiza-swot/. Accessed 20 December 2017.
  • Lantz, M.; Svensson, M.; Björnsson, L.; Börjesson, P. (2007). The prospects for an expansion of biogas systems in Sweden-Incentives, barriers and potentials. Energy Policy 35(3): 1830-1843.
  • Macnaghten, P.; Urry, J. (2005). Alternatywne przyrody. Nowe myślenie o przyrodzie i społeczeństwie. Warszawa: Wydawnictwo Naukowe Scholar Sp. z o.o.
  • Mateescu, C; Băran, G.; Băbuţanu, C. A. (2008). Opportunities and barriers for development of biogas technologies in Romania. Environmental Engineering and Management Journal 7(5): 603-607.
  • McCormick, K.; Kåberger, T. (2007). Key barriers for bioenergy in Europe: Economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass and Bioenergy 31(7): 443-452.
  • Miah, M. R.; Rahman, A. K. Md. L.; Akanda, M. R.; Pulak, A.; Rouf, Md. A. (2016). Production of biogas from poultry litter mixed with the co-substrate cow dung. Journal of Taibah University for Science 10(4): 497-504.
  • Möller, K.; Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences 12(3): 242-257.
  • Nazarko, J.; Kędzior, Z. (2010). Uwarunkowania rozwoju nanotechnologii w województwie podlaskim. Wyniki analiz STEEPVL i SWOT. Białystok: Politechnika Białostocka. Available at: https://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiKjfenjZnYAhUEDOwKHQFYA1MQFggnMAA&url=https://depot.ceon.pl/bitstream/handle/123456789/7512/Uwarunkowania_rozwoju_nanotechnologii_w_wojew dztwie_podlaskim_Wyniki_analiz_STEEPVL_i_SWOT.pdf?sequence=1&usg=AOvVaw3e6lV4pWTSnhiRTCVAo-VE. Accessed 20 December 2017.
  • Painuly, J.P. (2001). Barriers to renewable energy penetration; a framework for analysis. Renewable Energy 24(1): 73-89.
  • Rupf, G. V.; Bahri, P. A.; de Boer, K.; McHenry, M. P. (2015). Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal. Renewable and Sustainable Energy Reviews 52: 468-476.
  • Stefaniuk, M.; Oleszczuk, P. (2015). Characterization of biochars produced from residues from biogas production. Journal of Analytical and Applied Pyrolysis 115: 157-165.
  • Sun, L.; Wan, S.; Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresource Technology 140: 406-413.
  • Szczakowski, Z. (2003). Transformacja systemowa w Polsce. Łódź: Wydawnictwo Wyższa Szkoła Kupiecka.
  • Toruński, J. (2010). Aspekty środowiskowe zrównoważonego rozwoju obszarów prawnie chronionych. Zeszyty Naukowe Akademii Podlaskiej w Siedlcach, Seria: Administracja i Zarządzanie 84: 21-32.
  • Tylińska, R. (2005). Analiza SWOT instrumentem w planowaniu rozwoju. Warszawa: Wydawnictwa Szkolne i Pedagogiczne Spółka Akcyjna. Available at: https://books.google.pl/books?hl=pl&lr=&id=0bWzd FKrsQMC&oi=fnd&pg=PA5&dq=Analiza+SWOT+artykuÅ‚y+naukowe&ots=YGWQdnTSUq&sig=6Uqvzr0OtWzgM8PrUlYW7S0XQY4&redir_esc=y
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171532690

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.