Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | nr 38 | 41
Tytuł artykułu

Markovian and multi-curve friendly parametrisation of HJM model used in valuation adjustment of interest rate derivatives

Treść / Zawartość
Warianty tytułu
Języki publikacji
We consider feasible Heath-Jarrow-Morton framework specifications that are easily implementable in XVA engines when pricing linear and non-linear interest rate derivatives in multicurve environment. Our particular focus is on relatively less liquid markets (Polish PLN) and the calibration problems arising from that fact. We first develop necessary tool-kit for multicurve construction and XVA integration and then show and discuss various specifications of HJM model with regard to their practical usage. We demonstrate the importance of Cheyette subclass and derive dynamics of instantaneous forward rates in generic form. We performed calibrations of several one-factor models of that form and found out that even with relatively simple specification i.e. Hull-White with two summands we may achieve satisfactory results in terms of calibration's quality and calculation time.
Opis fizyczny
  • F.M. Ametrano, M. Bianchetti, (2009) Bootstrapping the illiquidity: multiple yield curves construction for market coherent forward rates estimation, available at SSRN:, (2009).
  • F.M. Ametrano, M. Bianchetti, (2013) Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask, Available at SSRN:, 2013.
  • L. Andersen, V. Piterbarg, (2010) Interest rate modeling-volume II: Term structure models, "Atlantic Financial Press", 2, 2010.
  • I. Beyna, (2013) Interest rate derivatives: valuation, calibration and sensitivity analysis, Springer Science & Business Media, 2013.
  • I. Beyna, C. Chiarella, B. Kang, (2012) Pricing interest rate derivatives in a multifactor HJM model with time, Available at Ideas:, 2012.
  • I. Beyna, U. Wystup, On the calibration of the Cheyette interest rate model, tech. rep., CPQF Working Paper Series, 2010.
  • M. Bianchetti, (2008) Two curves, one price: pricing & hedging interest rate derivatives decoupling forwarding and discounting yield curves, 2008.
  • M. Bianchetti, (2010) Two curves, one price, "Risk", 23, 2010, p. 66.
  • M. Bianchetti, M. Carlicchi, (2011) Interest rates after the credit crunch: Multiple curve vanilla derivatives and SABR, Available at arXiv:1103.2567, 2011.
  • M. Bianchetti, Markets evolution after the credit crunch, Available at arXiv:1301.7078, (2013).
  • A. Brace, M. Musiela, (1994) A multifactor Gauss Markov implementation of Heath, Jarrow, and Morton, "Mathematical Finance", 4, 1994, pp. 259-283.
  • A. Brace, M. Musiela, (1994) Swap derivatives in a Gaussian HJM framework, preprint, The University of NSW, 1994.
  • D. Brigo, M. Morini, A. Pallavicini, (2013) Counterparty credit risk, collateral and funding: with pricing cases for all asset classes, John Wiley & Sons, 2013.
  • O. Cheyette, (1995) Markov representation of the Heath-Jarrow-Morton model, Available at SSRN:
  • M. Chibane, J. Selvaraj, G. Sheldon, (2009) Building curves on a good basis, Available at SSRN:, 2009.
  • D. Filipovic, (2009) Term-Structure Models. A Graduate Course, Springer, 2009.
  • A. Green, (2015) XVA: Credit, Funding and Capital Valuation Adjustments, John Wiley & Sons, 2015.
  • J. Gregory, (2012) Counterparty credit risk and credit value adjustment: A continuing challenge for global financial markets, John Wiley & Sons, 2012.
  • P.S. Hagan, G. West, (2006) Interpolation methods for curve construction, "Applied Mathematical Finance", 13, 2006, pp. 89-129.
  • D. Heath, R. Jarrow, A. Morton, (1992) Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation, "Econometrica", 1992, pp. 77-105.
  • M. Henrard, (2003) Explicit bond option formula in Heath-Jarrow-Morton one factor model, "International Journal of Theoretical and Applied Finance", 6, 2003, pp. 57-72.
  • M. Henrard, (2014) Interest rate modelling in the multi-curve framework: foundations, evolution and implementation, Springer, 2014.
  • A. Hirsa, (2012) Computational methods in finance, CRC Press, 2012.
  • T.S. Ho, S.-B. LEE, (1986) Term structure movements and pricing interest rate contingent claims, "Journal of Finance", 41, 1986, pp. 1011-1029.
  • F. Jamshidian, (1991) Bond and option evaluation in the Gaussian interest rate model, "Research in Finance", 9, 1991, pp. 131-170.
  • J. Kienitz, (2013) Transforming volatility-multi curve cap and swaption volatilities, Available at SSRN:, 2013.
  • J. Kienitz, P. Caspers, (2017) Interest Rate Derivatives Explained: Volume 2: Term Structure and Volatility Modelling, Springer, 2017.
  • R. Lichters, R. Stamm, D. Gallagher, (2015) Modern Derivatives Pricing and Credit Exposure Analysis: Theory and Practice of CSA and XVA Pricing, Exposure Simulation and Backtesting, Springer, 2015.
  • D. Lu, (2015) The XVA of financial derivatives: CVA, DVA and FVA explained, Springer, 2015.
  • N. Moreni, A. Pallavicini, (2014) Parsimonious HJM modelling for multiple yield curve dynamics, "Quantitative Finance", 14, 2014, pp. 199-210.
  • M. Musiela, M. Rutkowski, (2005) Martingale methods in financial modelling, 2005.
  • P. Ritchken, L. Sankarasubramanian, (1995) Volatility structures of forward rates and the dynamics of the term structure, "Mathematical Finance", 5, 1995, pp. 55-72.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.