PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | vol. 3, t. 335 | 49--61
Tytuł artykułu

Application of Hölder Function to Expansion Intensity of Spatial Phenomena Analysis

Treść / Zawartość
Warianty tytułu
Zastosowanie funkcji Höldera do badania intensywności ekspansji zjawisk przestrzennych
Języki publikacji
EN
Abstrakty
Rozwój metod, za pomocą których można opisać szeregi czasowe z wykorzystaniem procesów stochastycznych, nastąpił w XX wieku. Modelowano między innymi procesy stacjonarne za pomocą wykładnika Hursta, a niestacjonarne z wykorzystaniem funkcji Höldera. Cechą charakterystyczną dla tego typu procesów jest analiza pamięci występującej w szeregu. Na przełomie XX i XXI w. wzrosło zainteresowanie statystyką i ekonometrią przestrzenną, a także analizami prowadzonymi w ramach nowej ekonomii geograficznej. W artykule zaproponowano implementację metod zaczerpniętych z analizy szeregów czasowych do modelowania danych w przestrzeni oraz zastosowanie wybranych mierników do badania intensywności ekspansji zjawisk w przestrzeni. Jako miarę intensywności wykorzystuje się punktowe wykładniki Höldera. Praca składa się z dwóch części. Pierwsza zawiera opis metodyki badań, druga przykładowe zastosowania.(abstrakt oryginalny)
EN
The development of methods describing time series using stochastic processes took place in the 20th century. Among others, stationary processes were modelled with Hurst exponent, whereas non-stationary processes with Hölder function. The characteristic feature of this type of processes is the analysis of the memory present in the time series. At the turn of the 21st century interest in statistics and spatial econometrics, as well as analyses carried out within the new economic geography arose. In this article, we have proposed the implementation of methods taken from the analysis of time series in the modelling of spatial data and the application of selected measures in studying the intensity of expansion in spatial phenomena. As the intensity measure we use Hölder point exponents. The article is composed of two parts. The first one contains the description of study methodology, the second - examples of application.(original abstract)
Rocznik
Strony
49--61
Opis fizyczny
Twórcy
  • University of Economics in Katowice, Poland
  • University of Economics in Katowice, Poland
Bibliografia
  • Ayache A., Lévy-Véhel J. (1999), Generalized Multifractional Brownian Motion: Definition and Preliminary Results, [in:] M. Dekking, J. Lévy-Véhel, E. Lutton, C. Tricot (eds.), Fractals: Theory and Applications in Engineering, Springer-Verlag, New York.
  • Ayache A., Taqqu M.S. (2004), Multifractional processes with random exponent, "Stochastic Processes and their Applications", no. 111(1), pp. 119-156.
  • Baltagi B.H. (2005), Econometric Analysis of Panel Data, John Wiley Sons, New York.
  • Barrière O. (2007), Synthèse et estimation de mouvements browniens multifractionnaires et autres processus à régularité prescrite, Définition du processus autorégulé multifractionnaire et applications. PhD thesis, IRCCyN.
  • Bass F. (1969), A New product growth for model consumer durables, "Managment Science", no. 15(5), pp. 215-227.
  • Box G.E.P., Jenkins G.M. (1976), Time series analysis forecasting and control, Holden-Day, San Francisco.
  • Daoudi K., Lévy-Véhel J., Meyer Y. (1998), Construction of continuous functions with prescribed local regularity, "Journal of Constructive Approximations", no. 014(03), pp. 349-385.
  • Domański R. (2002), Gospodarka przestrzenna, Wydawnictwo Naukowe PWN, Warszawa.
  • Echelard A., Barrière O., Lévy-Véhel J. (2010), Terrain modelling with multifractional Brownian motion and self-regulating processe, "ICCVG", no. 6374, pp. 342-351.
  • Falconer K.J., Lévy-Véhel J. (2008), Multifractional, multistable and other processes with prescribed local form, "Journal of Theoretical Probability", https://link.springer.com/article/10.1007/s10959-008-0147-9 [accessed: .....].
  • Fuller W.A. (1996), Introduction to Statistical Time Series, Wiley, New York.
  • Getis A., Mur J., Zoller H. (2004), Spatial Econometrics and Spatial Statistics, Palgrave Macmillan, New York.
  • Granger C.W.J., Mizon G.E. (1994), Nonstationary Time Series Analysis and Cointegration, Oxford University Press, New York.
  • Hagerstrand T. (1952), The propagation and innovation waves, "Lund Studies in Geography", no. 4, Lund, Gleerup.
  • Hsiao C. (2003), Analysis of Panel Data, Cambridge University Press, Cambridge.
  • Kopczewska K. (2007), Ekonometria i statystyka przestrzenna, Wydawnictwo CeDeWu, Warszawa.
  • Krugman P.R. (1991), Geography and Trade, The MIT Press, Cambridge.
  • Lévy-Véhel J., Mendivil F. (2011), Multifractal and higher dimensional zeta functions, "Nonlinearity", no. 24(1), pp. 259-276.
  • Lévy-Véhel J., Seuret S. (2004), The 2-microlocal Formalism, Fractal Geometry and Applications, A Jubilee of Benoit Mandelbrot, " Proceedings of Symposia in Pure Mathematics", no. 72(2), pp. 153-215.
  • Mandelbrot B.B. (1982), The Fractal Geometry of Nature, WH Freeman Co, New York.
  • Mastalerz-Kodzis A. (2003), Modelowanie procesów na rynku kapitałowym za pomocą multifraktali, "Prace Naukowe", Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach, Katowice.
  • Mastalerz-Kodzis A. (2016), Algorytm modelowania danych przestrzennych o zadanej lokalnej regularności, [in:] J. Mika, M. Miśkiewicz-Nawrocka (eds.), Metody i modele analiz ilościowych w ekonomii i zarządzaniu, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice.
  • Matyas L., Sevestre P. (eds.) (2006), The Econometrics of Panel Data, Kluwer Academic Publishers, Dordrecht.
  • Paelinck J.H.P., Klaassen L.H. (1983), Ekonometria przestrzenna, PWN, Warszawa.
  • Peltier R.F., Lévy-Véhel J. (1995), Multifractional Brownian Motion: Definition and Preliminary Results, INRIA Recquencourt, Rapport de recherche no. 2645.
  • Perfect E., Tarquis A.M., Bird N.R.A. (2009), Accuracy of generalized dimensions estimated from grayscale images using the method of moments, "Fractals", vol. 17, no. 3, pp. 351-363.
  • Peters E.E. (1994), Fractal Market Analysis, John Wiley and Sons, New York.
  • Suchecki B. (2010), Ekonometria przestrzenna, Wydawnictwo C.H. Beck, Warszawa.
  • Zeliaś A. (ed.) (1991), Ekonometria przestrzenna, PWE, Warszawa.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171533300

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.