PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | nr 16 (22) | 181--186
Tytuł artykułu

A Note on the Zenga Index with Respect to Different Results Depending on Grouping or not Grouping the Data

Warianty tytułu
Uwagi dotyczące indeksu Zengi w odniesieniu do otrzymywania odmiennych wyników dla zgrupowanych i niezgrupowanych danych
Języki publikacji
EN
Abstrakty
Indeks Zengi jest stosunkowo nową propozycją w kontekście pomiaru nierówności. Własności i praktyczne zastosowania zarówno indeksu Zengi, jak i związanej z nim krzywej Zengi są obecnie intensywnie badane. Wskazywano na korzyści płynące ze stosowania tej właśnie miary oraz różnice pomiędzy nią a innymi istniejącymi miernikami nierówności. Jednakże istnieje potencjalny problem, związany ze stosowaniem indeksu Zengi, który jak dotąd nie został dostatecznie przedyskutowany. Otóż okazuje się, iż indeks ten daje odmienne wyniki w zależności od tego, czy stosowany jest do danych szczegółowych czy też zgrupowanych. Nawet jeśli wydawać by się mogło, iż jest to problem nieistotny ze względów praktycznych - ze względu na moce obecnych komputerów, niewymagające grupowania danych - zagadnienie to wciąż pozostaje problemem konceptualnym. Ponadto w niektórych sytuacjach, na przykład w sytuacji stosowania skal ekwiwalentności, kwestii grupowania danych nie da się uniknąć. W artykule problem ten został sformułowany, zilustrowany na prostych przykładach oraz krótko przedyskutowany.(abstrakt oryginalny)
EN
The Zenga index of inequality is a new proposal of measuring this phenomenon. The properties and empirical applications of Zenga index (and the underlying Zenga curve) have been recently widely investigated. Its advantages (and differences, as compared to other existing measures) have been pointed out. However, one of the possible problems associated with the use of the Zenga index has not yet been appropriately addressed.Namely, the Zenga index assumes different values depending on whether it is applied to grouped or ungrouped data. As it may seem that due to contemporary computers power it is not necessary to group data, the problem still exists as a conceptual one. Moreover, in some situations - such as applying equivalence scales - avoiding grouping of the data is not possible even in principle. The problem is stated, illustrated by simple numerical examples and briefly discussed in this paper.(original abstract)
Słowa kluczowe
PL
EN
Rocznik
Numer
Strony
181--186
Opis fizyczny
Twórcy
  • Wrocław University of Economics, Poland
Bibliografia
  • Cowell F.A., 1984, The structure of American income inequality, Review of Income and Wealth, 30(3), pp. 351-375.
  • Greselin F., Pasquazzi L., Zitikis R., 2010, Zenga's new index of economic inequality, its estimation, and an analysis of incomes in Italy, Journal of Probability and Statistics, Article ID 718905.
  • Greselin F., Pellegrino S., Vernizzi A., 2017, Lorenz versus Zenga Inequality Curves: a New Approach to Measuring Tax Redistribution and Progressivity, Working papers 046, Department of Economics and Statistics (Dipartimento di Scienze Economico- Sociali e Matematico-Statistiche), University of Torino.
  • Jedrzejczak A., 2015, Asymptotic properties of some estimators for Gini and Zenga inequality measures: a simulation study, Statistica&Applicazioni, 13(2), pp. 143-162.
  • Kot S.M., 2012, Ku stochastycznemu paradygmatowi ekonomii dobrobytu, Oficyna Wydawnicza Impuls.
  • Ostasiewicz K., Mazurek E., 2013, Comparison of the Gini and Zenga indexes using some theoretical income distributions abstract, Operations Research and Decisions, 23, pp. 37-62.
  • Pollastri A., 1987, Characteristics of Zenga's Concentration Index Z2, [in:] M. Zenga (ed.), La Distribuzione Personale del Reddito: Problemi di Formazione, di Ripartizione e Misurazione, Vita e Pensiero, Milano, pp. 214-229.
  • Radaelli P., 2010, On the decomposition by subgroups of the Gini index and Zenga's uniformity and inequality indexes, International Statistical Review, 78(1), pp. 81-101.
  • Zenga M., 2007, Inequality curve and inequality index based on the ratios between lower and upper arithmetic means, Statistica & Applicazioni, vol. 5(1), pp. 3-27
  • Zenga M., Radaelli P., 2012, Decomposition of Zenga's inequality index by sources, Statistica & Applicazioni, 9(1), pp. 3-34.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171534395

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.