Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 14 | nr 2 | 67--82
Tytuł artykułu

Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels

Warianty tytułu
Języki publikacji
In the literature, there is no consensus as to which Value-at-Risk forecasting model is the best for measuring market risk in banks. In the study an analysis of Value-at-Risk forecasting model quality over varying economic stability periods for main indices from stock exchanges was conducted. The VaR forecasts from GARCH(1,1), GARCH-t(1,1), GARCH-st(1,1), QML-GARCH(1,1), CAViaR and historical simulation models in periods with contrasting volatility trends (increasing, constantly high and decreasing) for countries economically developed (the USA - S&P 500, Germany - DAX and Japan -Nikkei 225) and economically developing (China - SSE COMP, Poland - WIG20 and Turkey - XU100) were compared. The data samples used in the analysis were selected from the period 01.01.1999 - 24.03.2017. To assess the VaR forecast quality: excess ratio, Basel traffic light test, coverage tests (Kupiec test, Christoffersen test), Dynamic Quantile test, cost functions and Diebold-Marino test were used. Obtained results show that the quality of Value-at-Risk forecasts for the models varies depending on a volatility trend. However, GARCH-st (1,1) and QML-GARCH(1,1) were found to be the most robust models in the different volatility periods. The results show as well that the CAViaR model forecasts were less appropriate in the increasing volatility period. Moreover, no significant differences for the VaR forecast quality were found for the developed and developing countries. (original abstract)
Opis fizyczny
  • University of Warsaw
  • University of Warsaw
  • Abad, P., Benito, S., López, C. (2014). A Comprehensive Review of Value at Risk Methodologies. The Spanish Review of Financial Economics, 12(1), 15-32.
  • Alonso, J.C., Arcos, M.A. (2006). Cuatro Hechos Estilizados De Las Series De Rendimientos: Una Ilustración Para Colombia. Estudios Gerenciales, 22(100), 103-124.
  • Angelidis, T., Benos, A., Degiannakis, S. (2004). The Use of GARCH Models in VaR Estimation. Statistical Methodology, 1(2), 105-128.
  • Barone-Adesi, G., Giannopoulos, K., Vosper, L. (1999). VaR without Correlations for Nonlinear Portfolios. Journal of Futures Markets, 19(5), 583-602.
  • Basle Committee on Banking Supervision, (1996). Supervisory Framework for the Use of "Backtesting" In Conjunction with the Internal Models Approach to Market Risk Capital Requirements.
  • Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31(3), 307-327.
  • Bollerslev, T. (1987). Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics, 69(3), 542-547.
  • Caporin, M. (2008). Evaluating Value-at-Risk Measures in Presence of Long Memory Conditional Volatility. Journal of Risk, 10(3), 79-110.
  • Christoffersen, P. (1998). Evaluating Interval Forecasts. International Economic Review, 39(4), 841-862.
  • Diebold, F.X., Mariano, R.S. (1995). Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 20 (1), 134144.
  • Dowd, K. (2002). Measuring Market Risk. Chichester: John Wiley & Sons, Ltd.
  • Engle, R.F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50 (4), 987-1007.
  • Engle, R.F. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. Journal of Economic Perspectives, 15(4), 157-168.
  • Engle, R.F. (2004). Risk and Volatility: Econometric Models and Financial Practice. The American Economic Review, 94(3), 405-420.
  • Engle, R.F., Manganelli, S. (2001). Value at Risk Models in Finance. European Central Bank Working Papers, 75.
  • Engle, R F., Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22(4), 367-381.
  • Jorion, P. (2007). Value at Risk - The New Benchmark for Managing Financial Risk. New York: McGraw-Hill.
  • Kupiec, P. (1995). Techniques for Verifying the Accuracy of Risk Management Models. Journal of Derivatives, 3(2), 73-84.
  • McAleer, M., Jimenez-Martin, J.-A., Perez-Amaral, T. (2009). Has the Basel II Accord Encouraged Risk Management During the 2008-2009 Financial Crisis?
  • Tsay, R.S. (2005). Analysis of Financial Time Series. Chicago: John Wiley & Sons, Ltd.
  • Sarma, M., Thomas, S., Shah, A. (2003). Selection of Value-at-Risk Models. Journal of Forecasting, 22(4), 337-358.
  • Shams, M., Sina, A. (2014). Evaluating Market Risk Assessment through VAR Approach before and after Financial Crisis in Tehran Stock Exchange Market (TSEM). Journal of Management and Sustainability, 4(2), 134-146.
  • Su, J.B., Hung, J.C. (2011). Empirical Analysis of Jump Dynamics, Heavy-tails and Skewness on Value-at-risk Estimation. Economic Modelling, 28(3), 1117-1130.
  • Tagliafichi, R.A. (2003). The Estimation of Market VaR using GARCH Models and a Heavy Tail Distributions. Paper presented at ASTIN Colloquium International Actuarial Association, Brussels.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.