PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | nr II/1 | 305--315
Tytuł artykułu

Electrooxidation of Methyl Alcohol with Ni-Co Catalyst

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to development of the renewable energy sources, the powering of fuel cells (FCs) with bio-fuels is very important. The one of this fuel is methyl alcohol. The use of fuel cells on a large scale is mainly limited by the high cost of catalysts - mainly platinum. Elimination of Pt as catalyst would allow for wider commercial application of FCs. The paper presents a study of methyl alcohol electrooxidation on electrode with Ni- Co alloy catalyst. Researches were done by the method of polarizing curves of electrooxidation of methanol in glass vessel. Conducted measurements show that there is a possibility of electrooxidation of methanol with Ni-Co catalyst. In any case, the process of electrooxidation of methanol occurs. A maximum current density was equal 50 mA/cm2. So, the work shows possibility to use Ni-Co alloys as catalysts for fuel electrode to methyl alcohol electrooxidation.(original abstract)
Rocznik
Numer
Strony
305--315
Opis fizyczny
Twórcy
  • University of Opole
  • University of Opole
Bibliografia
  • Appleby, A.J., Foulkes, F.R. (1988). Fuel cell handbook. New York: Van Nostrand Reinhold Co. Inc.
  • Armour, M. A. (2003). Hazarodous laboratory chemicals disposal guide. Boca Raton: CRC Press.
  • Asazawa, K., Yamada, K., Tanaka, H., Oka, A., Taniguchi, M., Kobayashi, T. (2007). A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angewandte Chemie, 119 (42): 8170-8173.
  • Barbira, F., Moltera, T., Daltonb L. (2005). Efficiency and weight trade-off analysis of regenerative fuel cells as energy storage for aerospace applications. International Journal of Hydrogen Energy, 30 (4): 351-357. DOI:10.1016/j.ijhydene.2004.08.004.
  • Bockris, J.O.M., Reddy, A.K.N. (2000). Modern electrochemistry. New York: Kulwer Academic/Plenum Publishers.
  • Chung, D.G., Lee, K.J, Sung, Y.E, (2016). Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation, J. Phys. Chem. C, 120 (17): 9028-9035. DOI: 10.1021/acs.jpcc.5b12303.
  • Dong, Y., Steinberg, M. (1997). Hynol - An economical process for methanol production from biomass and natural gas with reduced CO2 emission. International Journal of Hydrogen Energy, 22 (10-11): 971-977. DOI:10.1016/S0360-3199(96)00198-X.
  • Freeh, J.E., Pratt, J.W., Brouwer, J. (2004). Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications. ASME Turbo Expo 2004: Power for Land, Sea, and Air, 7 (GT2004-53616): 371-379. DOI:10.1115/GT2004-53616.
  • Furukawa, H., Yaghi, O.Y. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc., 131 (25): 8875-8883. DOI: 10.1021/ja9015765.
  • Gaines, L.L., Elgowainy, A., Wang, M.Q. (2008). Full Fuel-Cycle Comparison of Forklift Propulsion Systems. Energy Systems Division, Argonne National Laboratory, Chicago, ANL/ESD/08-3.
  • Granovskii, M., Dincer, I., Rosen, M.A. (2006). Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources, 159: 1186-1193. DOI: 10.1016/j.jpowsour.2005.11.086.
  • Hamnett, A. (1997). Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 38 (4): 445-457.
  • Hiranoa, A., Hon-Namia, K., Kunitoa, S., Hadab, M., Ogushib, Y. (1998). Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catalysis Today, 45 (1-4): 399-404. DOI:10.1016/S0920-5861(98)00275-2.
  • Hoogers, G. (2003). Fuel cell technology handbook. Boca Raton: CRC Press.
  • Kakaç S., Pramuanjaroenkij A., Vasilev L., (2007). Mini-Micro Fuel Cells: Fundamentals and Applications, Springer.
  • Kelley, S.C., Deluga, G.A., Smyrl, W.H. (2000). A Miniature Methanol/Air Polymer Electrolyte Fuel Cell. Electrochem, Solid-State Lett, 3 (9): 407-409. DOI:10.1149/1.1391161.
  • Larminie, J., Dicks, A. (2005). Fuel cell system explained. John Wiley & Sons Ltd.
  • Li, L., Xing, Y. (2009). Methanol electro-oxidation on Pt-Ru alloy nanoparticles supported on carbon nanotubes, Energies, 2: 789-804. DOI:10.3390/en20300789
  • Niaz, S., Manzoor, T., Pandith, A.H. (2015). Hydrogen storage: Materials, methods and perspectives, Renewable and Sustainable Energy Reviews. 50: 457-469. DOI: https://doi.org/10.1016/j.rser.2015.05.011.
  • O'Hayre, R., Cha, S.W., Colella, W., Prinz, F.B. (2005). Fuel cell fundamentals. Hoboken: John Wiley & Sons.
  • Offer, G.J., Howey, D., Contestabilec, M., Clagued, R., Brandona, N.P. (2010). Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 38 (1): 24-29. DOI: https://doi.org/10.1016/j.enpol.2009.08.040.
  • Papadias, D.D, Ahmed, S., Kumar, R. (2012). Fuel quality issues with biogas energy - An economic analysis for a stationary fuel cell system. Energy, 44 (1): 257-277. DOI: https://doi.org/10.1016/j.energy.2012.06.031.
  • Rolison, D.R., Hagans, P.L., Swider, K.E., Long, J.W. (1999). Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode catalysis: The importance of mixed electron/proton conductivity. Langmuir, 15(3): 774-779.
  • Sakintuna, B., Lamari-Darkrimb, F., Hirscherc, M. (2007). Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 32: 1121-1140. DOI: 10.1016/j.ijhydene.2006.11.022.
  • Steigerwalt, E.S., Deluga, G.A., Cliffel, D.E., Lukehart, C.M. (2001). A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a directmethanol fuel cell anode catalyst. Journal of Physical Chemistry B, 105 (34): 8097-8101. DOI: 10.1021/jp011633i.
  • Stolten, D. (2010). Hydrogen and fuel cells. Fundamentals, technologies and applications. Weinheim: Wiley-VCH.
  • Tripković, A.V., Popović, K.D, Grgur, B.N, Blizanac, B., Ross, P.N., Marković, N.M. (2002). Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions, Electrochimica Acta, 47, (22-23): 3707-3714. DOI: 10.1016/S0013- 4686(02)00340-7.
  • Von Helmolt, R., Eberle, U. (2007). Fuel cell vehicles: Status 2007, Journal of Power Sources, 165 (2): 833-843. DOI: https://doi.org/10.1016/j.jpowsour.2006.12.073.
  • Wyman, C.E., Bain, R.L., Hinman, N.D., Stevens, D.J. (1993). Ethanol and methanol from cellulosic biomass. Washington: Island Press.
  • Włodarczyk, P.P., Włodarczyk, B. (2016a). Electrooxidation of diesel fuel in alkaline electrolyte. Infrastructure and Ecology of Rural Areas, 4 (1): 1071-1080. DOI: http://dx.medra.org/10.14597/infraeco.2016.4.1.078.
  • Włodarczyk, P.P., Włodarczyk, B. (2016b). Canola oil electrooxidation in an aqueous solution of KOH - Possibility of alkaline fuel cell powering with canola oil. Journal of Power Technologies, 96 (6).
  • Włodarczyk, B., Włodarczyk, P.P. (2016c). Methanol electrooxidation with Cu-B catalyst. Infrastructure and Ecology of Rural Areas, 4 (2): 1483-1492. DOI: http://dx.medra.org/10.14597/infraeco.2016.4.2.110.
  • Włodarczyk, P.P., Włodarczyk, B. (2016d). Stop Ni-Co jako katalizator anody ogniwa paliwowego zasilanego alkoholem metylowym, Diagnozowanie Stanu Środowiska, Metody Badawcze - Prognozy, 10: 217-227.
  • Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A. (2017a). Possibility of direct electricity production from waste canola oil. E3S Web of Conferences, 19, 01019. DOI:10.1051/e3sconf/20171901019.
  • Włodarczyk, P.P., Włodarczyk, B. (2017b). Electrooxidation of coconut oil in alkaline electrolyte. Journal of Ecological Engineering, 18 (5): 173-179. DOI: 10.12911/22998993/74623.
  • Włodarczyk, P.P., Włodarczyk, B. (2017c). Elektroutlenianie odpadowego syntetycznego oleju silnikowego w wodnym roztworze H2SO4. Inżynieria Ekologiczna, 18 (1): 65-70. DOI: 10.12912/23920629/66985.
  • Włodarczyk, P.P., Włodarczyk, B. (2017d). Electricity production from waste engine oil from agricultural machinery. Infrastructure And Ecology Of Ruras Areas, 4 (2): 1609-1618. DOI: http://dx.medra.org/10.14597/infraeco.2017.4.2.121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171538363

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.