PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 31 | 326--337
Tytuł artykułu

Linguistic Summaries of Time Series: on Some Extended Aggregation Techniques

Treść / Zawartość
Warianty tytułu
Lingwistyczne podsumowania ciągów czasowych: Pewne rozszerzenia technik agregacji
Języki publikacji
EN
Abstrakty
W artykule przedstawiono kolejne rozszerzenie poprzednich prac autorów (Kacprzyk, Wilbik, Zadrożny), dotyczących podsumowań lingwistycznych, w których podstawowym podejściem jest rachunek lingwistycznie kwantyfikowanych wyrażeń, a głównym zagadnieniem jest oparte na kwantyfikatorach lingwistycznych agregowanie częściowych ocen (trendów). Wykorzystuje się podejście wielokryterialne do podsumowań z użyciem miary informatywności, zaproponowanej przez Yagera, odwołującej się do kryteriów prawdy, zogniskowania i specyficzności. Tego rodzaju podejście wielokryterialne wydaje się zarówno efektywne merytorycznie, jak i wystarczająco zrozumiałe i intuicyjne. Przytoczono obszerne przykłady dla notowań funduszy inwestycyjnych.(abstrakt oryginalny)
EN
We further extend our approach to the linguistic summarization of time series (cf. Kacprzyk, Wilbik and Zadrożny) in which an approach based on a calculus of linguistically quantified propositions is employed, and the essence of the problem is equated with a linguistic quantifier driven aggregation of partial scores (trends). We proceed towards a multicriteria analysis of summaries by assuming as a quality criterion Yager's measure of informativeness that combines in a natural way the measures of truth, focus and specificity, to obtain a more advanced evaluation of summaries. The use of the informativeness measure for the purpose of a multicriteria evaluation of linguistic summaries of time series seems to be an effective and efficient approach, yet simple enough for practical applications. Results on the summarization of quotations of an investment (mutual) fund are very encouraging. (original abstract)
Rocznik
Tom
31
Strony
326--337
Opis fizyczny
Twórcy
  • Polska Akademia Nauk
autor
  • Polska Akademia Nauk
Bibliografia
  • [1]Past performance does not predict future performance www.freemoneyfinance.com/2007/01/past_performanc. html.
  • [2]Past performance is not everything www.personalfn.com/detail.asp?date=9/1/2007 &story=3.
  • [3] New year's eve:past performance is no indication of future return. stockcasting.blogspot.com/2005/12/new-years-evepast-performance-is-no.html.
  • [4]A 10-step guide to evaluating mutual funds. www.personalfn.com/detail.asp? date=5/18/2007&story=2.
  • [5]Batyrshin I.: On granular derivatives and the solution of a granular initial value problem. International Journal Applied Mathematics and Computer Science, 12(3), 2002, pp. 403-410.
  • [6]Batyrshin I., Sheremetov L.: Perception based functions in qualitative forecasting. In: Perception-based Data Mining and Decision Making in Economics and Finance (Batyrshin I., Kacprzyk J., Sheremetov L., Zadeh L.A., Eds.) Springer-Verlag, Berlin and Heidelberg 2006.
  • [7]Glöckner I.: Fuzzy Quantifiers, A Computational Theory. volume 193. Springer-Verlag, Berlin and Heidelberg 2006.
  • [8]Kacprzyk J., Wilbik A.: Linguistic summarization of time series using fuzzy logic with linguistic quantifiers: a truth and specificity based approach. In: Artificial Intelligence and Soft Computing - ICAISC 2008 (Rutkowski L., Tadeusiewicz R., Zadeh L.A., Zurada J.M., Eds.) Springer-Verlag, Berlin and Heidelberg 2008, pp. 241-252.
  • [9]Kacprzyk J., Wilbik, A.: Linguistic summarization of time series using linguistic quantifiers: augmenting the analysis by a degree of fuzziness. In: Proceedings of 2008 IEEE World Congress on Computational Intelligence, IEEE Press, 2008, pp. 1146-1153.
  • [10]Kacprzyk J., Wilbik A.: A new insight into the linguistic summarization of time series via a degree of support: Elimination of infrequent patterns. In: Soft Methods for Handling Variability and Imprecision (Dubois D., Lubiano M., Prade H., Gil M.A., Grzegorzewski P., Hryniewicz O., Eds.), Springer-Verlag, Berlin and Heidelberg 2008, pp. 393-400.
  • [11]Kacprzyk J., Wilbik A.: Towards an efficient generation of linguistic summaries of time series using a degree of focus. In: Proceedings of the 28th North American Fuzzy Information Processing Society Annual Conference - NAFIPS 2009, 2009.
  • [12]Kacprzyk J., Wilbik A., Zadrożny S.: Linguistic summarization of trends: a fuzzy logic based approach. In: Proceedings of the 11th International Conference Information Processing and Management of Uncertainty in Knowledgebased Systems, 2006, pp. 2166-2172.
  • [13]Kacprzyk J., Wilbik A., Zadrożny S.: Linguistic summarization of time series under different granulation of describing features. In: Rough Sets and Intelligent Systems Paradigms - RSEISP 2007 (Kryszkiewicz M., Peters J.F., Rybinski H., Skowron A., Eds.), Springer- Verlag, Berlin and Heidelberg 2007, pp. 230-240.
  • [14]Kacprzyk J., Wilbik A., Zadrożny S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems, 159(12), 2008, pp. 1485-1499.
  • [15]Kacprzyk J., Yager R.R.: Linguistic summaries of data using fuzzy logic. International Journal of General Systems, 30, 2001, pp. 33-154.
  • [16]Kacprzyk J., Yager R.R., Zadrożny S.: A fuzzy logic based approach to linguistic summaries of databases. International Journal of Applied Mathematics and Computer Science, 10, 2000, pp. 813-834.
  • [17]Kacprzyk J., Yager R.R., Zadrożny S.: Fuzzy linguistic summaries of databases for an efficient business data analysis and decision support. In: Knowledge Discovery for Business Information Systems (Abramowicz J.Z., Ed.), Kluwer, Boston 2001, pp. 129-152.
  • [18]Kacprzyk J., Zadrożny S.: FQUERYfor Access: fuzzy querying for a windows-basedDBMS. In: Fuzziness in Database Management Systems (Bosc P., Kacprzyk J., Eds.), Springer- Verlag, Heidelberg 1995, pp. 415-433.
  • [19]Kacprzyk J., Zadrożny S.: Linguistic database summaries and their protoforms: toward natural language based knowledge discovery tools. Information Sciences, 173, 2005, pp. 281-304.
  • [20]Kacprzyk J., Zadrożny S.: Data mining via protoform based linguistic summaries: Some possible relations to natural language generation. In: 2009 IEEE Symposium Series on Computational Intelligence Proceedings, Nashville, TN, 2009, pp. 217-224.
  • [21]Kacprzyk J., Zadrożny S.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries and natural language generation. IEEE Transactions on Fuzzy Systems (forthcoming).
  • [22]Keogh E., Chu S., Hart D., Pazzani M.: An online algorithm for segmenting time series. In: Proceedings of the 2001 IEEE International Conference on Data Mining, 2001.
  • [23]Keogh E., Chu S., Hart D., Pazzani M.: Segmenting time series: A survey and novel approach. In: Data Mining in Time Series Databases (Last M., Kandel A., Bunke H., Eds.), World Scientific Publishing, 2004.
  • [24]McGowan L.: The Answer to 'What Are Absolute Return Mutual Funds?' Depends on Who You Ask, http://mutualfunds.about.com/od/typesoffunds/a/Absolute_return_fund_ basics.htm
  • [25]Myers R.: Using past performance to pick mutual funds. Nation's Business, Oct, 1997, findarticles.com/p/articles/ mi_m1154/is_n10_v85/ai_19856416.
  • [26]Reiter E., Dale R.: Building Natural Language Generation Systems. Cambridge University Press, 2006.
  • [27]Sklansky J., Gonzalez V.: Fast polygonal approximation of digitized curves. Pattern Recognition, 12(5), 1980, pp. 327-331.
  • [28]Sripada S., Reiter E., Davy I.: Sumtime-mousam: Configurable marine weather forecast generator. Expert Update, 6(3), 2003, pp. 4-10.
  • [29]U.S. Securities and Exchange Commission: Mutual fund investing: Look at more than a fund's past performance, www.sec.gov/investor/pubs/mfperform.htm.
  • [30]Yager R.R.: On measures of specificity. In: Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications (Kaynak O., Zadeh L.A., Türksen B., Rudas I.J., Eds.), Springer-Verlag: Berlin 1998, pp. 94-113.
  • [31]Yager R.R.: Measuring tranquility and anxiety in decision making: An application of fuzzy sets. International Journal of General Systems, 8, 1982, pp. 139-146.
  • [32]Yager R.R.: A new approach to the summarization of data. Information Sciences, 28, 1982, pp. 69-86.
  • [33]Yager R.R.: On linguistic summaries in data. In: Knowledge Discovery in Databases (Piatetsky-Shapiro G., Frawley W.J., Eds.), MIT Press, USA, Cambridge 1991, pp. 347-363
  • [34]Yager R.R., Ford K.M., Cañas A.J.: An approach to the linguistic summarization of data, Springer, 1990, pp. 456-468.
  • [35]Zadeh L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 9(2), 1983, pp. 111-127.
  • [36]Zadeh L.A.: A prototype-centered approach to adding deduction capabilities to search engines - the concept of a protoform. In: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2002), 2002, pp. 523-525.
  • [37]Zadeh L.A.: Computation with imprecise probabilities. In: In IPMU'08, Torremolinos (Malaga), June 22-27, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171542782

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.