PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | vol. 18, iss. 2 | 178--189
Tytuł artykułu

Singular Value Decomposition Approaches in A Correspondence Analysis with The Use of R

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of a correspondence analysis is the graphical representation of the categories of variables in one frame of reference. This visualization is possible due to the decomposition of the basic matrix with the use of Singular Value Decomposition (SVD). There are three matrices used in the process of decomposition: right singular vectors, left singular vectors, and a singular value diagonal matrix. The aim of this paper is to compare four different approaches and algorithms of SVD methods used in a correspondence analysis. In the literature, four approaches are known to singular value decomposition, defined by: R.A. Fisher (1940), M.J. Greenacre (1984), E.B. Anderson (1991), and J.D. Jobson (1992). Those computational procedures will be presented and compared in this paper. Also, methods of determining the coordinates of the category column and line matrix, as well as the values of inertia will be defined for these approaches. A key problem is to compare the well-known approaches, since in the literature only one approach - proposed by Greenacre - is used for singular value decomposition. The reason of the superiority of this algorithm over the others may be the simplicity and ease of the mathematical calculations. Greenacre's algorithm is also used in R statistical software, making its availability and popularity growing, however, other algorithms are worth presenting and focusing on. (original abstract)
Rocznik
Strony
178--189
Opis fizyczny
Twórcy
  • University of Economics in Katowice, Poland
Bibliografia
  • Anderson, E.B. (1991). The statistical analysis of categorical data. Berlin: Spinger-Verlag.
  • Beltrami, E. (1873). Sulle Funzioni Bilineari. Giornale di Matematiche ud uso Degli Studenti Delle Universita, 11, 98-106.
  • Borg, I., Groenen, P. (1997). Modern multidimensional scaling. Theory and application. New York: Spinger-Verlag.
  • Chambers, J.M. (1977). Computational methods for data analysis. New York: Wiley.
  • Clausen, S.E. (1998). Applied correspondence analysis. An introduction. Thousand Oaks: Sage Publications.
  • Eckart, C., Young, G. (1936). The approximation of one matrix by an-other of lower rank. Psychometrika, 1, 211-218.
  • Fisher R.A. (1940). The precision of discriminant functions. Annals of Eugenics, 10, 422-429.
  • Gabriel, K.R. (1978). Least-squares approximation of matrices by additive and multiplicative models. J. R. Statist. Soc. B, 40, 186-196.
  • Good, I.J. (1969). Some applications of the singular decomposition of a matrix. Technometrics, 11, 823-831.
  • Green, P.E., Carroll, J.D. (1976). Mathematical tools for applied multivariate analysis. New York: Academic Press.
  • Greenacre, M., Underhill, L.G. (1982). Scaling a data matrix in low-dimensional Euclidean space. In: D.M. Hawkins, Topics in applied multivariate analysis (pp. 183-268). UK: Cambridge University Press.
  • Greenacre, M.J. (1984). Theory and applications of correspondence analysis. London: Academic Press.
  • Greenacre, M.J. (2010). Biplots in Practice. Fundacion BBVA.
  • Heijden VanDer, P.G.M. (1987). Correspondence analysis of longitudinal categorical data. Leiden: DSWO Press.
  • Horst, P. (1936). Obtaining a composite measure from a number of dif-ferent measures of the same attribute. Psychometrika, 1, 53-60.
  • Jobson, J.D. (1992). Applied multivariate data analysis Vol. II: Categorical and multivariate methods. New York: Spinger-Verlag.
  • Jordan, C. (1874). Memoire sur les formes bilineaires. Journal de Mathematiques Pures et Appliquees, Deuxieme Serie, 19, 37-39.
  • Korobeynikov, A, Larsen, R.M. (2016). svd: Interfaces to Various State-of-Art SVD and Eigensolvers R package version 0.4. Retrieved from: https://CRAN.R-project.org/package=svd.
  • Kshirsagar, A.M. (1972). Multivariate analysis. New York: Marcel Dekker.
  • Marshal, A., Olkin, I. (1979). Inequalities: theory of majorization and its applications. New York: Academic Press.
  • Rao, C.R. (1980). Matrix approximation and reduction of dimensional-ity in multivariate statistical analysis. In: P.R. Krishnaiah (ed.), Multivariate analysis V (pp. 3-22). North Holland, Amsterdam.
  • Stewart, G.W. (1993). On the Early History of the Singular Value Decomposition. SIAM Review, 4 (35), 551-566.
  • Qiu, Y., Mei, J., Guennebaud, G., Niesen, J., (2016). RSpectra: Solvers for Large Scale Eigenvalue and SVD Problems.R package version 0.12-0. Retrieved from: https://CRAN.Rproject. org/package=RSpectra.
  • Voronin, S., Martinsson, P.G. (2015). RSVDPACK: Subroutines for Computing Partial Singular Value Decompositions via Randomized Sampling on Single Core, Multi Core, and GPU Architectures. arXiv preprint (pp. 1-15). Retrieved from: http://arxiv.org/abs/1502.05366.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171543598

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.