Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 89 | 42--51
Tytuł artykułu

An Ontology-Based Approach to Opinion Mining Tools Selection

Treść / Zawartość
Warianty tytułu
Ontologia reprezentacja wiedzy w obszarze opinion mining
Języki publikacji
Ontologie udowodniły, że stanowią skuteczne narzędzie zarządzania i konceptualizacji wiedzy dziedzinowej. W przeciwieństwie do baz danych ontologie, reprezentując idee "otwartego świata", pozwalają budować modele wiedzy o charakterze szeroko dostępnym i gotowym do ponownego wykorzystania i łączenia. Rozwój narzędzi informatyki spowodował, ze implementacja praktyczna ontologii pozwala opracować model wiedzy, który jest nie tylko otwarty, lecz jednocześnie zrozumiany przez oprogramowanie komputerowe/czytany maszynowo zachowując jednocześnie możliwości tzw. tagowania semantycznego, co stwarza duży potencjał wykorzystania tejże wiedzy w sieci Internet. W artykule prezentowana jest próba budowy ontologii dla obszaru technik i metod opinion mining. Opracowana taksonomia oraz przedstawiona ontologia wyraźnie ukazują możliwości praktyczne zarówno w obszarach samej konceptualizacji wiedzy dziedzinowej jak też wyszukiwania i dostępu do zgromadzonej wiedzy dziedzinowej.(abstrakt oryginalny)
Ontologies aim to become a succesful and modern tools for knowledge management and conceptualization. In opposite to data bases, ontologies represent an idea of open world, enabling to build knowledge-based models which are ready to use and reuse. Development of information tools is resulted in the practical implementation of an ontology, enabling to develop knowledge-based model, which is not only open, but also understood by computer machine-readable software, while maintaining the capabilities of the semantic tagging which creates great potential for using this knowledge in the Internet.This article presents an attempt to an ontology-based approach to opinion mining methods and tools selection. The elaborated taxonomy and ontology explicitly emphasize the practical opportunities both in the areas of conceptualization of domain knowledge as well as search and access to domain knowledge. (original abstract)
Opis fizyczny
  • University of Szczecin
  • [1] Abbasi A., Chen H., Salem A., Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums, ACM Transactions on Information Systems, 26(3), June 2008, Article 12.
  • [2] Binali H., Potdar V., Wu C., A state of the art opinion mining and its application domains, IEEE International Conference on Industrial Technology, Gippsland, VIC, 2009, pp. 1-6.
  • [3] Cadilhac A., Benamara F., Aussenac-Gilles N. Ontolexical resources for feature-based opinion mining: a case-study, 2010.
  • [4] Carenini G., Raymond T. Ng, Zwart E., Extracting Knowledge from Evaluative Text, In Proceedings of the 3rd international conference on Knowledge captur, 2005.
  • [5] Castellanos M., Wang D.U., Processing and DW2.0 in Operational Business Intelligence Information Systems, Lecture Notes in Computer Science, pp.33-45.
  • [6] Cheng X., Xu F., Fine-grained Opinion Topic and Polarity Identification, In Proceedings of the Sixth International Language Resources and Evaluation (LREC' 08), Marrakech, Morocco 2008.
  • [7] Choi Y., Cardie C., Riloff E., Patwardhan S., Identifying sources of opinions with conditional random fields and extraction patterns, In Proceedings of HLT/EMNLP 2005.
  • [8] Ding, X. and Liu, B. "The Utility of Linguistic Rules in Opinion Mining", in Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, Netherlands, 23-27 July 2007, pp. 811-812.
  • [9] Dittenbach D., Berger H., Merkl D., Improving domain ontologies by mining semantics from text, in Proceedings of the First Asia-Pacific Conference on Conceptual Modelling (APCCM2004), 2004, pp. 91-100.
  • [10] Eirinaki P., Singh J., Feature-based opinion mining and ranking, Journal of Computer and System Sciences, 78(4), 2011, pp.1175-1184.
  • [11] Felden C., Chamoni P., Execution towards a Business Process Intelligence Processing, 47(6), pp.195-206.
  • [12] Gamon M., Aue A., Corston O.S., Ringger E., Pulse: Mining Customer Opinions from Free Text, In Proceedings of International symposium on intelligent data analysis N°6, Madrid 2005.
  • [13] Hu M., Liu B., Mining and summarizing customer reviews, in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, NewYork, USA, 2004, pp.168-177.
  • [14] Kantardzic M., Data Mining: Concepts, Models, Methods, and Algorithms, ACL '04 Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Wilet-IEEE Express, 2002.
  • [15] Konys A. Wątróbski J., Różewski P., Approach to Practical Ontology Design for Supporting COTS Component Selection Processes, ACIIDS 2013 - A. Selamat et al. (Eds.): ACIIDS 2013, Part II, LNAI 7803, Springer, Heidelberg, 2013, 245-255.
  • [16] Konys A., A Framework for Analysis of Ontology-Based Data Access, in: Computational Collective Intelligence, 8th International Conference, ICCCI 2016, Part II, Nguyen, N.-T., Iliadis, L., Manolopoulos, Y., Trawiński, B. (Eds.), Lecure Notes in Computer Science, Springer International Publishing, 2016, pp. 397-408.
  • [17] Konys A., A Tool Supporting Mining Based Approach Selection to Automatic Ontology Construction, IADIS Journal on Computer Science and Information Systems, 2015, pp. 3-10, ISSN: 1646-3692.
  • [18] Konys, A., An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain, Sustainability 2018, 10, 300.
  • [19] Lau R.Y.K. et al., Automatic Domain Ontology Extraction for Context-Sensitive Opinion Mining, ICIS 2009 Proceedings. Paper 35. 2009.
  • [20] Lejeune M. A. M., Measuring the Impact of Data Mining on Churn, Management, Internet Research, ABI/INFORM Global, vol. 11, no. 5. Bradford, 2001, pp. 375-388.
  • [21] Negash, S., Gray, P., Business intelligence (Chapter 45). In: F. Burstein & C., Holsapple (eds.) Handbook of decision support systems 2. Springer Link 2008, 175-193.
  • [22] Popescu A.M., Etzioni O., Extracting Product Features and Opinions from Reviews, In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing 2005.
  • [23] Read J., Hope D., Carroll J., Annotating Expressions of Appraisal in English, The Linguistic Annotation Workshop, ACL 2007.
  • [24] Soo-Min K., Hovy E., Extracting Opinions, Opinion Holders, and Topics Expressed in Online News Media Text, In Proceedings of ACL/COLING Workshop on Sentiment and Subjectivity in Text, Sydney, Australia 2006.
  • [25] Strapparava C., Valitutti A., WordNet-Affect: an Affective Extension of WordNet, Proceedings of LREC 04, 2004.
  • [26] Sukumaran S., Sureka S., Integrating Structured and Unstructured Data Using Text Tagging and Annotation, Business Intelligence Journal 2006, 11(2), pp. 8-16.
  • [27] Tho Q.T., Hui S.C., Fong A., Cao T.H., Automatic Fuzzy Ontology Generation for Semantic Web, IEEE Transactions on Knowledge and Data Engineering, 18(6), June 2006, pp. 842- 856.
  • [28] Turney P.D., Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews, Proceedings of 2006 International Conference on Intelligent User Interfaces (IUI06).
  • [29] Wei W., Gulla J.A., Sentiment Learning on Product Reviews via Sentiment Ontology Tree, Proceedings of the Association for ComputationalnLinguistics (ACL), pp.404-413, 2010.
  • [30] Wiebe J., Wilson T., Cardie C., Language Res Eval, 2005, 39: 165.
  • [31] Xu R. et al., Learning Knowledge from Relevant Webpage for Opinion Analysis, in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, pp. 307-313. 2008.
  • [32] Yaakub R. M, Li. Y., Feng,Y., Integration of Opinion into Customer Analysis Model, in proceedings of Eighth IEEE International Conference on e-Business Engineering 2011, pp. 90-95.
  • [33] Zhang Q., Segall R. S., Web Mining: a Survey of Current Research, Techniques, and Software, 2008.
  • [34] Wątróbski J., Jankowski J., Knowledge management in MCDA domain, in 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2015, pp. 1445-1450.
  • [35] Zhou L., Chaovalit P., Ontology-supported polarity mining, J. Am. Soc. Inf. Sci. Technol. 59, 1, January 2008, 98-110.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.