Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | nr 1 | 83--106
Tytuł artykułu

Sentiment-Induced Regime Switching in Density Forecasts of Emerging Markets' Exchange Rates : Calibrated Simulation Trumps Estimated Autoregression

Treść / Zawartość
Warianty tytułu
Języki publikacji
Our contribution to existing research is that we propose a novel method to generate density forecasts of foreign exchange rates using Monte Carlo simulation with regime-switching depending on global financial markets' sentiment. The proposed approach has been examined in a one-month ahead forecasting exercise for 22 emerging market currency rates vs. the US dollar. The key findings of our paper are as follows. We show that: (1) our forecasting method is properly calibrated based on a variety of tests and is also suitable for Value-at-Risk analysis; (2) according to the log predictive density score density forecasts produced with our method are superior to random walk forecasts in the case of all 22 analysed currency pairs, and for 7 exchange rates this advantage is statistically significant; (3) in the case of 19 analysed currency pairs our method performs better than the threshold autoregressive model (TAR) with market sentiment as the threshold variable, and for 11 exchange rates this forecasting edge is statistically significant; (4) in the case of 15 analysed currency pairs the proposed approach yields better results than the AR(1)-GARCH(1,1) benchmark, but in none of the cases this difference is statistically significant. The conducted evaluation of the proposed approach suggests that such tool can be suitable for economists, risk managers, econometricians, or policy makers focused on producing accurate density forecasts of foreign exchange rates. (original abstract)
Opis fizyczny
  • Warsaw School of Economics, Poland
  • Aastveit K.A., Gerdrup K.R., Jore A.S., Thorsrud L.A. (2014), Nowcasting GDP in real time: a density combination approach, Journal of Business & Economic Statistics, 32(1), 48-68.
  • Adolfson M., Linde J., Villani M. (2005), Forecasting performance of an open economy Dynamic Stochastic General Equilibrium Model, Sveriges Riksbank Working Paper, 190.
  • Amisano G., Giacomini R. (2007), Comparing density forecasts via weighted Likelihood Ratio Tests, Journal of Business and Economic Statistics, 25, 177-190.
  • Balke N.S., Ma J., Wohar M.E. (2013), The contribution of economic fundamentals to movements in exchange rates, Journal of International Economics, 90(1), 1-16.
  • Berkowitz J. (2001), Testing Density Forecasts with Applications to Risk Management, University of California.
  • Boero G., Marrocu E. (2004), The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts, International Journal of Forecasting, 20, 305-320.
  • Brunnrmeier M.K., Nagel S., Pedersen L.H. (2009), Carry trades and currency crashes, Macroeconomic Annual, 3(1), 313-348.
  • Cairns J., Ho C., McCauley R. (2007), Exchange rates and global volatility: implications for Asia- -Pacific currencies, BIS Quarterly Review, March.
  • Campbell S.D. (2006), A review of backtesting and backtesting procedures, The Journal of Risk,9(2), 1-17.
  • Ca'Zorzi M., Rubaszek M. (2018), Exchange rate forecasting on a Napkin, ECB Working Paper, 2151.
  • Christoffersen P., Hahn J., Inoue A. (2001), Testing and comparing value-a-risk measures, Journal of Empirical Finance, 8, 325-342.
  • Christoffersen P. (1998), Evaluating interval forecasts, International Economic Review, 39, 841-862.
  • Christoffersen P.F., Mazzotta S. (2005), The accuracy of density forecasts from foreign exchange options, Journal of Financial Econometrics, 3, 578-605.
  • Clark T.E. (2011), Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility, Journal of Business & Economic Statistics, 29(3), 327-341.
  • Clews R., Panigirtzoglou N., Proudman J. (2000), Recent developments in extracting information from options markets, Bank of England Quarterly Bulletin, February.
  • Diebold F.X., Hahn J., Tay A.S. (1999), Multivariate density forecast evaluation and calibration in financial risk management: high-frequency returns of foreign exchange, Review of Economics and Statistics, 81, 661-673.
  • Diebold F.X., Mariano R.S. (1995), Comparing predictive accuracy, Journal of Business and Economic Statistics, 13, 253-263.
  • Dowd K. (2006), Retrospective assessment of Value at Risk, in: M.K. Ong (ed.), Risk Management: A Modern Perspective, Academic Press.
  • Dumas B., Solnik B. (1995), The world price of foreign exchange risk, Journal of Finance, 2, 445- 479.
  • Fama E.F. (1984), Forward and spot exchange rates, Journal of Monetary Economics, 14, 319-338.
  • Gaglianone W., Lima L., Linton O., Smith D. (2011), Evaluating value-at-risk models via quantile regression, Journal of Business & Economic Statistics, Taylor & Francis Journals, 29(1), 150 -160.
  • Gaglianone W., Marins J. (2017), Evaluation of exchange rate point and density forecasts: an application to Brazil, International Journal of Forecasting, 33(3), 707-728.
  • Ghosh A., Bera A.K. (2015), Density forecast evaluation for dependent financial data: Theory and applications, China International Conference in Finance 2015, July 9-12, 1-57, Research Collection Lee Kong Chian School Of Business.
  • Giordani P., Mattias V. (2010), Forecasting macroeconomic time series with locally adaptive signal extraction, International Journal of Forecasting, 26(2), 312-325.
  • Groen J., Matsumoto A. (2004), Real exchange rate persistence and systematic monetary policy behaviour, Bank of England Working Papers, 231.
  • Hallam M., Olmo J. (2014), Semiparametric density forecasts of daily financial returns from intraday data, Journal of Financial Econometrics, 12(2), 408-432.
  • Harvey D., Leybourne S., Newbold P. (1997), Testing the equality of prediction mean squared errors, International Journal of Forecasting, 13(2), 281-291.
  • Herbst E., Schorfheide F. (2012), Evaluating DSGE model forecasts of comovements, Journal of Econometrics, 171(2), 152-166.
  • Hodrick R.J. (1989), Risk, uncertainty, and exchange rate, Journal of Monetary Economics, 23, 433- 459.
  • Hong Y., Li H., Zhao F. (2007), Can the random walk be beaten in out-of-sample density forecasts: evidence from intraday foreign exchange rates, Journal of Econometrics, 141, 736-776.
  • Hopper G. (1997), What determines the exchange rate: economic factors or market sentiment?, Business Review, 5, 17-29.
  • Huurman C., Ravazzolo F., Zhou C. (2012), The power of weather, Computational Statistics & Data Analysis, 56(11), 3793-3807.
  • Jorion P. (2001), Value at Risk, the New Benchmark for Managing Financial Risk, McGraw-Hill.
  • Kitsul Y., Wright J.H. (2013), The economics of options-implied inflation probability density functions, Journal of Financial Economics, 110(3), 696 -711.
  • Kohler M. (2010), Exchange rates during financial crises, BIS Quarterly Review, March.
  • Kolasa M., Rubaszek M., Skrzypczyński P. (2012), Putting the New Keynesian DSGE model to the real-time forecasting test, Journal of Money, Credit and Banking, 44(7), 1301-1324.
  • Kupiec P. (1995), Techniques for verifying the accuracy of risk management models, Journal of Derivatives, 3, 73-84.
  • Liu M.H., Margaritis D., Tourani-Rad A. (2012), Risk appetite, carry trade and exchange rates, Global Finance Journal, 23, 48-63.
  • Meese R., Rogoff K. (1983), Empirical exchange rate models of the seventies: Do they fit out of sample?, Journal of International Economics, 14, 3-24.
  • Orlowski L.T. (2017), Volatility of commodity futures prices and market-implied inflation expectations, Journal of International Financial Markets, Institutions and Money, 51, 133-141.
  • Pippenger M.K., Goering G.E. (1998), Exchange rate forecasting: results from a threshold autoregressive model, Open Economies Review, 9(2), 157-170.
  • Sarno L., Valente G. (2005), Empirical exchange rate models and currency risk: some evidence from density forecasts, Journal of International Money and Finance, 24(2), 363-385.
  • Shackleton M.B., Taylor S.J., Yu P. (2010), A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices, Journal of Banking & Finance, 34(11), 2678-2693.
  • Tay A., Wallis K. (2000), Density forecasting: a survey, Journal of Forecasting, 19, 235-254.
  • Taylor J.W. (2012), Density forecasting of intraday call center arrivals using models based on exponential smoothing, Management Science, 58(3), 534-549.
  • Whaley R.E. (2000), The investor fear gauge, Journal of Portfolio Management, Spring, 12-17.
  • Wolters M.H. (2015), Evaluating point and density forecasts of DSGE models, Journal of Applied Econometrics, 30(1), 74-96.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.