PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 4 | nr 51 | 18--39
Tytuł artykułu

Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we analyse the performance of option pricing models using 5-minutes transactional data for the Japanese Nikkei 225 index options. We compare 6 different option pricing models: the Black (1976) model with different assumptions about the volatility process (realized volatility with and without smoothing, historical volatility and implied volatility), the stochastic volatility model of Heston (1993) and the GARCH(1,1) model. To assess the model performance, we use median absolute percentage error based on differences between theoretical and transactional options prices. We present our results with respect to 5 classes of option moneyness, 5 classes of option time to maturity and 2 option types (calls and puts). The Black model with implied volatility (BIV) comes as the best and the GARCH(1,1) as the worst one. For both call and put options, we observe the clear relation between average pricing errors and option moneyness: high error values for deep OTM options and the best fit for deep ITM options. Pricing errors also depend on time to maturity, although this relationship depend on option moneyness. For low value options (deep OTM and OTM), we obtained lower errors for longer maturities. On the other hand, for high value options (ITM and deep ITM) pricing errors are lower for short times to maturity. We obtained similar average pricing errors for call and put options. Moreover, we do not see any advantage of much complex and time-consuming models. Additionally, we describe liquidity of the Nikkei225 option pricing market and try to compare the results we obtain here with a detailed study for Polish emerging option market (Kokoszczyński et al. 2010b). (original abstract)
Rocznik
Tom
4
Numer
Strony
18--39
Opis fizyczny
Twórcy
  • University of Warsaw, Poland
  • University of Warsaw, Poland
  • University of Warsaw, Poland
Bibliografia
  • [1] Ait-Sahalia, Y., P.A. Mykland, 2009, Estimating Volatility in the Presence of Market Microstructure Noise: A Review of the Theory and Practical Considerations, in: T.G. Andersen, R.A. Davis, J.-P. Kreiss, T. Mikosch (eds.), Handbook of Financial Time Series, Springer, Berlin.
  • [2] Amin, K., R. Jarrow, 1992, Pricing options on risky assets in a stochastic interest rate economy, Mathematical Finance 2, 217-237.
  • [3] An, Y., W.Suo, 2009, An Empirical Comparison of Option Pricing Models in Hedging Exotic Options, Financial Management, 38, 889-914.
  • [4] Andersen, T.G., P.Frederiksen, A.D.Staal, 2007, The information content of realized volatility forecasts, mimeo.
  • [5] Bates, D., 1995, Testing Option Pricing Models, NBER Working Paper No. 5129.
  • [6] Bates, D.S., 2003, Empirical option pricing: a retrospection, Journal of Econometrics, 16, 387-404.
  • [7] Beygelman, R., 2005, Bid-Ask Spreads and Asymmetry of Option Prices, Goethe University, Frankfurt, mimeo.
  • [8] Black F., 1976, The pricing of commodity contracts, Journal of Financial Economics, 3, 167-179.
  • [9] Black, F., Scholes, M., 1973, The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-659.
  • [10] Bollerslev, T., R. Chou, K. Kroner, 1992, ARCH modelling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52, 5-59.
  • [11] Bollerslev, T., R. Engle, D. Nelson, 1994, ARCH model; w: R. Engle, D. McFadden (eds.), Handbook of Econometrics, Vol. IV, Elsevier, Amsterdam.
  • [12] Bollerslev, T., R.F. Engle, J.M. Wooldridge, 1988, A Capital Asset Pricing Model with Time Varying Covariances, Journal of Political Economy, 96, 116-131.
  • [13] Brandt, M.W., T. Wu, 2002, Cross-sectional tests of deterministic volatility functions, Journal of Empirical Finance, 9, 525-550.
  • [14] Broadie, M., J.B. Detemple, 2004, Option Pricing: Valuation Models and Applications, Management Science, 50, 1145-1177.
  • [15] Campbell, J., L. Hentschel, 1992, No news is good news: An asymmetric model of changing volatility in stock returns, Journal of Financial Economics, 31, 281-318.
  • [16] Christoffersen, P., K. Jacobs, 2004, The Importance of the Loss Function in Option Valuation, Journal of Financial Economics, 6, 213-234.
  • [17] Corrado, C., S. Tie, 1996, Skewness and kurtosis in S&P 500 index returns implied by option prices, Journal of Financial Research, 19, 175-192.
  • [18] Dennis, P., S. Mayhew, 2009, Microstructural biases in empirical tests of option pricing models, Review of Derivatives Research, 12, 169-191.
  • [19] Derman, E., I. Kani, 1994, Riding on a smile, RISK, 7, 32-39.
  • [20] Duan, J.-C., 1995, The GARCH option pricing model, Mathematical Finance, 5, 13-32.
  • [21] Duan, J.-C., P. Ritchken, Z. Sun, 2004, Jump starting GARCH: Pricing and hedging options with jumps in returns and volatilities, manuscript, University of Toronto.
  • [22] Dupire, B., 1994, Pricing with a smile, RISK 7, 18-20.
  • [23] Ferreira, E., M.Gago, A.Leon, G. Rubio, 2005, An empirical comparison of the performance of alternative option pricing model, Investigaciones Economicas, 29, 483-523.
  • [24] Fiszeder, P., 2008, Pricing the WIG20 Index Options Using GARCH Models, a paper presented at the conference Forecasting Financial Markets and Economic Decision-making, Łódź, 14-17 May 2008.
  • [25] French, K., G. W. Schwert, R. Stambaugh, 1987, Expected stock returns and volatility. Journal of Financial Economics, 19, 3-30.
  • [26] Fung, J.K.W., H.M.K. Mok, 2001, Index Options-Futures Arbitrage: A Comparative Study with Bid-Ask and Transaction Data, BRC Papers on Financial Derivatives and Investment Strategies, Hong Kong Baptist University.
  • [27] Garcia, R., E. Renault, 1998, A note on hedging in ARCH and stochastic volatility option pricing models, Mathematical Finance, 8, 153-161.
  • [28] Garcia, R., E. Ghysels, E. Renault, 2010, The econometrics of option pricing, in: Y. Ait-Sahalia, L. Hansen (eds.), Handbook of financial econometrics, North Holland, Oxford and Amsterdam.
  • [29] Glosten, L., R. Jagannathan, D. Runkle, 1993, On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance, 8, 1779-1801.
  • [30] Han, C., 2008, The Comparisons between Three Option Pricing Models and Black-Scholes Formula in Pricing Performance and Trading Strategy: Evidence from the FTSE 100 Options, Master Thesis, National Chung Cheng University.
  • [31] Hansen, P., and Lunde, A., 2004, A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1) Model?, Journal of Applied Econometrics, 20,873-889.
  • [32] Heston, S.L., 1993, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, 6, 327-343.
  • [33] Hull, J., A. White, 1987, The Pricing of Options with Stochastic Volatilities, Journal of Finance, 42, 281-300.
  • [34] Iaquinta, G., 2007, The analysis of the perpetual option markets: Theory and evidence, Bergamo University, unpublished Ph.D. thesis.
  • [35] Jarrow, R., A. Rudd, 1982, Approximate option valuation for arbitrary stochastic processes, Journal of Financial Economics, 10, 347-369.
  • [36] Kanoh, S., A. Takeuchi, 2006, An Analysis of Option Pricing in the Japanese Market, Discussion Paper Series No. 145, Hitotsubashi University.
  • [37] Kokoszczyński, R., N. Nehrebecka, P. Sakowski, P. Strawiński, R. Ślepaczuk, 2010a, Option Pricing Models with HF Data - a Comparative Study. The Properties of the Black Model with Different Volatility Measures, University of Warsaw, Faculty of Economic Sciences, Working Papers 3/2010.
  • [38] Kokoszczyński, R., P. Sakowski, R. Ślepaczuk, 2010b, Midquotes or Transactional Data? The Comparison of Black Model on HF Data, University of Warsaw, Faculty of Economic Sciences,Working Papers 15/2010.
  • [39] Li, S., 2006, The Arbitrage Efficiency of the Nikkei 225 Options Market: A Put-Call Parity Analysis, Monetary and Economic Studies (Bank of Japan), November, 33-54.
  • [40] Lim, Guay, Gael Martin and Vance Martin, 2005, Parametric pricing of higher order moments in S&P options, Journal of Applied Econometrics, 20, 377-404.
  • [41] Maheu, J., T. McCurdy, 2004, News arrival, jump dynamics and volatility components for individual stock returns, Journal of Finance, 59, 755-779.
  • [42] Mitra, S., 2009, A Review of Volatility and Option Pricing, arXiv:0904.1292v1.
  • [43] Mitsui, H., K. Satoyoshi, 2010, Empirical Study of Nikkei 225 Option with Markov Switching GARCH Model, Asia-Pacific Financial Markets, On-Line First.
  • [44] Mixon, S., 2009, Option markets and implied volatility: Past versus present, Journal of Financial Economics, 94, 171-191.
  • [45] Pagan, A., G. W. Schwert, 1990, Alternative models for conditional stock volatility, Journal of Econometrics, 45, 267-290.
  • [46] Raj, M., D.C. Thurston, 1998, Transactions data examination of the effectiveness of the Black model for pricing options on Nikkei index futures, Journal of Financial and Strategic Decisions, 11, 37-45.
  • [47] Ritchken, P., R. Trevor, 1999, Pricing options under generalized GARCH and stochastic volatility processes, Journal of Finance, 54, 377-402.
  • [48] Rubinstein, M., 1985, Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978, Journal of Finance, 40, 455-480.
  • [49] Rubinstein, Mark, 1998, Edgeworth binominal trees, Journal of Derivatives, 5, 20-27.
  • [50] Sakowski P., 2011, Wycena opcji indeksowych na danych wysokiej częstotliwości. Analiza porównawcza (Index option pricing using high-frequency data. A comparative analysis), PhD thesis, University of Warsaw, Faculty of Economic Sciences.
  • [51] Stein, E., J. Stein, 1991, Stock Price Distributions with Stochastic Volatility: An Analytic Approach, Review of Financial Studies, IV, 727-752.
  • [52] Ślepaczuk R., G.Zakrzewski, 2009, High-frequency and model-free volatility estimators, University of Warsaw, Faculty of Economic Sciences, Working Papers 13/2009.
  • [53] Tsiaras, L., 2009, The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks, Aarhus University, mimeo.
  • [54] Yao, J., Y. Li, C.L. Tan, 2000, Option price forecasting using neural networks, Omega, 28, 455-466.
  • [55] Wei, J.Z., 1995, Empirical Tests of the Pricing of Nikkei Put Warrants, The Financial Review, 30, 211-241.
  • [56] Zivot E., 2008, Practical issues in the analysis of univariate GARCH models, University of Washington working papers: http://faculty.washington.edu/ezivot/research/practicalgarchfinal.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171553981

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.