PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | nr 2 | 69--80
Tytuł artykułu

Current Trends in Leaching of Noble Metals from Electronic Waste

Warianty tytułu
Bieżące trendy w ługowaniu metali szlachetnych z elektroodpadów
Języki publikacji
EN
Abstrakty
Metale szlachetne są wykorzystywane w przemyśle elektrycznym i elektronicznym ze względu na ich doskonałe przewodnictwo elektryczne, niską rezystancję elektryczną i odporność na korozję, mimo że pierwiastki ziem rzadkich zaczęły częściowo zastępować metale szlachetne w przemyśle elektronicznym. Dlatego duża liczba e-odpadów zawiera znaczną ilość metali szlachetnych, szczególnie złota, srebra i palladu. Recykling metali szlachetnych z odpadów elektronicznych jest zatem bardzo ważny. Na przykład zawartość złota w zużytych płytkach obwodów drukowanych jest 35-50 razy wyższa niż zawartość złota w rudach. Recykling metali szlachetnych z elektroodpadów, w tym ługowanie, oczyszczanie oraz odzysk i rozdział, jest drugim etapem po odzysku metali nieszlachetnych. Najczęściej do ługowania metali szlachetnych stosowane są cyjanek, tiomocznik i tiosiarczan, ze względu na powstanie stabilnego kompleksu metalu. W niniejszej pracy przedstawiono przegląd różnych rozwiązań i roztworów wykorzystywanych do ługowania metali szlachetnych z odpadów i/lub rud. (abstrakt oryginalny)
EN
Noble metals have been used in electric and electronic industries due to their excellent electrical conductivity, low contact electrical resistance and corrosion resistance, even though rare earths have started partially replacing precious metals in electronic industry. Therefore, a large number of e-waste contains significant amount of precious metals, particularly gold, silver, and palladium. It is of importance to recycle precious metals from e-waste. For instance, the gold content in waste printed circuit boards is 35-50 times higher than gold ore. Extraction of noble metals from waste electronic and electrical equipment (WEEE), including leaching, purification and recovery, is the second stage after the recovery of base metals. The most common leaching reagents for precious metal leaching include cyanide, thiourea and thiosulfate because of the stable metal complex formed. This paper presents a review of various solutions using for noble metals leaching from wastes or ores. (original abstract)
Słowa kluczowe
Rocznik
Numer
Strony
69--80
Opis fizyczny
Twórcy
  • Poznań University of Economics and Business
Bibliografia
  • [1] Ahtiainen R., Lundstrom M., Liipo J. (2018) Preg-robbing verification and prevention in gold chloride-bromide leaching. Minerals Engineering, 128, 153-159.
  • [2] Akcil A., Erust C., Gahan C.S., Ozgun M., SahinM., Tunck A. (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants. A review. Waste Management, 45, 258-271.
  • [3] Altansukh B., Haga K., Ariunbolor N., Kawamura S., Shibayama A. (2016) Leaching and adsorption of gold from waste printed circuit boards using iodine-iodide solution and activated carbon. Engineering Journal, 20 (4), 29-40.
  • [4] Alzate A., Lopez M.E., Serna C. (2016) Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate. Waste Management, 57, 113-120.
  • [5] Baghalha M. (2012) The leaching kinetics of an oxide gold ore with iodide/iodine solutions. Hydrometallurgy, 113-114, 42-50.
  • [6] Birich A., Mohamed S.R., Friedrich B. (2018) Screening of non-cyanide leaching reagents for gold recovery from waste electric and electronic equipment, Journal of Sustainable Metallurgy, https://link.springer.com/article/10.1007/s40831-018-0160-x.
  • [7] Birloaga I., Coman V., Kopacek B., Veglio F. (2014) An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Waste Management, 34, 2581-2586.
  • [8] Birloaga I., Michelis I.D., Ferrela F., Buzatu M., Veglio F. (2013) Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management, 33, 935-941.
  • [9] Birloaga I., Veglio F. (2016) Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. Journal of Environmental Chemical Engineering, 4, 20-29.
  • [10] Camelino S., Rao J., Padilla R.L., Lucci R. (2015) Initial studies about gold leaching from printed circuit boards (PCB's) of waste cell phones. Procedia Materials Science, 9, 105-112.
  • [11] Cui J., Zhang L. (2008) Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158, 228-256.
  • [12] Deng T.L., Liao M.X., Wang M.H., Chen Y.M., Belzile N. (2001) Enhancemet of gold extraction from bioxidation residues using an acidic sodium sulphite thiourea system. Minerals Engineering, 14 (2), 263-268.
  • [13] Dorin R., Woods R. (1991) Determination of leaching rates of precious metals by electrochemical techniques. Journal of Applied Electrochemistry, 21 (5), 419-421.
  • [14] Ficeriova J., Balaz P., Dutkova E., Gock E. (2008) Leaching of gold and silver from crushed Au-Ag wastes. Open Chemistry Journal, 2, 6-9.
  • [15] Ficeriova J., Balaz P., Gock E. (2011) Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovaca, 16 (2), 128-131.
  • [16] Gurung M., Adhikari B.B., Kawakita H., Ohto K., Inoue K., Alam S. (2013) Recovery of gold and silver from spent mobie phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy, 133, 84-93.
  • [17] Ha V.H., Lee J.-C., Huynh T.H., Jeong J., Pandey B.D. (2014) Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy, 149, 118-126.
  • [18] Ha V.H., Lee J.-C., J eong J ., H ai H .T., J ha M .K. ( 2010) Thiosulfate l eaching o f g old from waste mobile phones. Journal of Hazardous Materials, 178 (1-3), 1115-1119.
  • [19] Hagelüken C. (2006) Recycling of electronic scrap at umicore's integrated metals smelter and refinery. World of Metallurgy - Erzmetall, 59 (3), 152-161.
  • [20] Hagelüken, C., Corti, C.W. (2010) Recycling of gold from electronics: Cost-effective use through 'Design for Recycling'. Gold Bulletin, 43 (3), 209-220.
  • [21] Halison G., Monhemius A.J. (2006) Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 14, 1158-1167.
  • [22] Heath J.A., Zhang X.R., Lin S. (2008) Anaerobic thiosulfate leaching - research on in situ gold leaching technology. Metallic Ore Dressing Abroad, 45, 16-22.
  • [23] Jing-Ying L., Xiu-li X., Wen-Quan L. (2012) Thiourea leaching gold and silver from printed circuit boards of waste mobile phones. Waste Management, 32 (6), 1209-1212.
  • [24] Juarez C.M., Dutra A.J.B. (2000) Gold electro-wining from thiourea solutions. Minerals Engineering, 13 (10-11), 1083-1096.
  • [25] Kamberovic Z., Korac M., Ivsic D., Nikoloc N., Ranitovic M. (2009) Hydrometallurgical process for extraction of metals from electronic waste - part I. Metallurgija - Journal of Metallurgy, 15, 231-244.
  • [26] Kasper A.C., Veit M.H. (2018) Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide. Brazilian Journal of Chemical Engineering, 35 (3), 931-942.
  • [27] Kaya M. (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Management, 57, 64-90.
  • [28] Konyratbekova S.S., Baikonurova A., Ussoltseva G.A., Erust C., Akcil A. (2015) Thermodynamic and kinetic of iodine-iodide leaching in gold hydrometallurgy. Transactions of Nonferrous Metals Society of China, 25 (11), 3774-3783.
  • [29] Korte G., Coulston F. (1998) Rrom single-substance evaluation to ecological process concept: dilemma of processing gold with cyanide. Ecotoxicology and Environmental Safety, 32, 96-101.
  • [30] Koyama K., Tanaka M., Lee J.-C. (2006) Copper laching behawior from waste printed circuit board in ammoniacal alkaline solution, Materials Transactions, 47 (7), 1788-1792.
  • [31] Lee C., Tang L., Popuri S.R. (2011) A study on the recycling of scrap integrated circuits by leaching. Waste Management & Research, 29 (7), 667-685.
  • [32] Li J., Miller J.D. (2007) Reaction kinetics of gold dissolution in acidic thiourea solution using ferric sulfate as oxidant. Hydrometallurgy, 89, 279-288.
  • [33] Lu Y., Xu Z. (2016) Precious metals recovery from waste printed circuit boards: A review for current status and perspective, Resources, Conservation and Recycling, 113, 28-39.
  • [34] Matthey J., PGM Market Reports May 2018, http://www.platinum.matthey.com (accessed 11 February 2019).
  • [35] Melashvili M ., F leming C ., Dymov I , M animaran M ., O'Day J . ( 2014) Study of gold leaching with bromine and bromide and the influence of sulphide minerals on this reaction, Conference of Metallurgists Proceedings, Published by the Canadian Institute of Mining, Metallurgy and Petroleum.
  • [36] Michelis I.D., Olivieri A., Ubaldini S., Ferella F., Beolchini F., Veglio F. (2018) R oasting and chlorine leaching of gold-bearing refractory concentrate: Experimental and process analysis. International Journal of Mining Science and Technology, 23 (5), 709-715.
  • [37] Montero R., Guevara A., De la Torre E. (2012) Recovery of gold, silver, copper and niobium from printed circuit boards using leaching column. Journal of Earth Science and Engineering, 2, 590-595.
  • [38] Moore D.M., Zhang X.R., Li C.X. (2005), Using thiosulfate as a leach reagents instead of cyanide, Metallic Ore Dressing Abroad, 42, 5-12.
  • [39] Moran R. (1998) Cyanide uncertainties: observation on the chemistry, toxicity and analysis of cyanide in mining-related waters, Mineral Policy Center, MPC issue paper no.1.
  • [40] Moran R. (2001) More cyanide uncertainties: lesson from the Baia Mare, Romania, spill - water quality and politics, Mineral Policy Center, MPC issue paper no.3.
  • [41] Park Y., Fray D. (2009) Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 164, 1152-1158.
  • [42] Petter P.M.H., Veit H.M., Bernardes A.M. (2014) Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Management, 34, 475-482.
  • [43] Quinet P., Proost J., Van Lierde A. (2005) Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Minerals and Metallurgical Processing, 22 (1), 17-22.
  • [44] Reuter M.A., Hudson C., van Schaik A., Heiskanen K., Meskers C., Hagelüken C. (2013) Metal Recycling: Opportunities, Limits, Infrastructure. A Report of the Working Group on the Global Metal Flows to the International Resource Panel, UNEP.
  • [45] Sadegh M., Safarzadeh M.S., Bafghi D., Moradkhani D. (2007) A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering, 20 (3), 211-220.
  • [46] Sheng P.P., Etsell T.H. (2007) Recovery of gold from computer circuit board scarp using aqua regia. Waste Management & Research, 24 (4), 380-383.
  • [47] Sousa R., Futuro A., Fiuza A., Vila M.C., Dinis M.L. (2018) Bromine leaching as an alternative method for gold dissolution. Minerals Engineering, 118, 16-23.
  • [48] Syed S. (2012) Recovery of gold from secondary sources - A review. Hydrometallurgy, 115-116, 30-51.
  • [49] Tripathi A., Kumar M., Sau D.C., Agrawal A., Chakravarty S., Mankhand T.R. (2012) Leaching of gold from waste mobile phone printed circuit boards (PCBs) with ammonium thiosulfate. International Journal of Metallurgical Engineering, 1 (2), 17-21.
  • [50] Ubaldini S., Fornari R., Massidda R., Abbruzzese C. (1998) Innovative thiourea gold leaching process. Hydrometallurgy, 48, 113-124.
  • [51] Willner J., Fornalczyk A. (2012) Złom elektroniczny jako źródło metali szlachetnych. Przemysł Chemiczny, 91 (4), 517-522.
  • [52] Wu J., Qiu L., Chen L., C hen D. (2009) Gold and silver leaching from printed circuit boards scrap with acid thiourea solution. Nonferrous Metals, 61, 90-93.
  • [53] Xiu F., Qi Y., Zhang F. (2015) Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management, 41, 134-141.
  • [54] Xu Q., Chen D.H., Chen L., Huang M.H. (2009) Iodine leaching proces for recovery of gold from waste PCB. Chinese Journal of Envionmental Engineering, 3 (5), 911-914.
  • [55] Xu Q., Chen D.H., Chen L., Huang M.H. (2010) Gold leaching from waste printed circuit board by iodine process. Nonferrous Metals, 62 (3), 88-90.
  • [56] Zhang L., Xu Z. (2016) A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19-36.
  • [57] Zhang S ., N icol M .J. ( 2005) An e lectrochemical s tudy o f t he d issolution o f g old i n thiosulfate solutions. Part II. Effect of copper. Journal of Applied Electrochemistry, 35, 339-345.
  • [58] Zhang Y., Liu S., Xie H., Zeng X., Li J. (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environmental Science, 16, 560-568.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171560247

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.