PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 10 | nr 2 | 3--15
Tytuł artykułu

Trends of Using Artificial Intelligence in Measuring Innovation Potential

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The field of academic research on corporate sustainability management has gained significant sophistication since the economic growth has been associated with innovation. In this paper, we are to show our research project that aims to build an artificial intelligence-based neurofuzzy inference system to be able to approximate company's innovation performance, thus the sustainability innovation potential. For this we used an empirical sample of Hungarian processing industry's large companies and built an adaptive neuro fuzzy inference system. (original abstract)
Rocznik
Tom
10
Numer
Strony
3--15
Opis fizyczny
Twórcy
  • Budapest Business School, Hungary
  • Budapest Business School, Hungary
  • Budapest Business School, Hungary
  • Babes-Bolyai University Cluj-Napoca, Romania
Bibliografia
  • United Nation. Our Common Future - Brundtland Report, 1987.
  • Iñigo E.A., Albareda L., Understanding sustainable innovation as a complex adaptive system: a systemic approach to the firm, Journal of Cleaner Production, 126, 1-20, https://doi.org/10.1016/ j.jclepro.2016.03.036.
  • Gianni M., Gotzamani K., Tsiotras G., Multiple perspectives on integrated management systems and corporate sustainability performance, Journal of Cleaner Production, 168, 1297-1311, https://doi.org/10.1016/j.jclepro.2017.09.061.
  • Hernandez-Vivanco A., Bernardo M., Cruz-Cázares C., Sustainable innovation through management systems integration, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2018.06.052.
  • Oskarsson K., Malmborg F., Integrated management systems as a corporate response to sustainable development, Corporate Social Responsibility and Environmental Management, 12, 121-128, https://doi.org/10.1002/csr.078, 2005.
  • Sroufe R., Integration and organizational change towards sustainability, Journal of Cleaner Production, 162, 315-329, https://doi.org/10.1016/ j.jclepro.2017.05.180.
  • Kennedy S., Whiteman G., van den Ende J., Radical innovation for sustainability: the power of strategy and open innovation, Long Range Planning, 50, 712-725, https://doi.org/10.1016/j.lrp.2016.05.004.
  • Lozano R., Nummert B., Ceulemans K., Elucidating the relationship between Sustainability Reporting and Organisational Change Management for Sustainability, Journal of Cleaner Production, 125, 168-188, 2016, https://doi.org/10.1016/ j.jclepro.2016.03.021.
  • Schumpeter J., Theorie der wirtschaftlichen Entwicklung, Berlin: Duncker & Humblot, 1912.
  • Stock T., Obenaus M., Slaymaker A., Seliger G., A Model for the Development of Sustainable Innovations for the Early Phase of the Innovation Process, Procedia Manufacturing, 8, 215-222, https://doi.org/10.1016/j.promfg.2017.02.027.
  • Trott P., Innovation management and new production development (3rd edition), Prentice Hall Financial Time, 2005.
  • Edison H., Nauman bin A., Torkar R., Towards innovation measurement in the software industry, The Journal of Systems and Software, 86, 1390-1407, 2013.
  • Boons F., Montalvo C., Quist J., Wagner M., Sustainable innovation, business models and economic performance: an overview, Journal of Clean er Production, 45, 1-8, https://doi.org/10.1016/ j.jclepro.2012.08.013.
  • Hansen E.G., Grosse-Dunker F.SI. [in:] S.O. Idowu, A.D. Capaldi, L. Zu, A. Das Gupta [Eds.], Encyclopedia of Corporate Social Responsibility (pp. 2407- 2417), Heidelberg & New York: Springer-Verlag, 2013.
  • Bocken N.M.P., Short S.W., Rana P., Evans S., A literature and practice review to develop sustainable business model archetypes, Journal of Cleaner Production, 65, 42-56, 2014.
  • Hart S.L., Milstein M.B., Creating sustainable value, Academy of Management Executive, 17(2), 56-67, 2003.
  • Delmas M.A., Pekovic S., Corporate sustainable innovation and employee behavior, Journal of Business Ethics, 150(4), 1071-1088, 2008.
  • Hellström T., Dimensions of environmentally sustainable innovation: The structure of eco-innovation concepts, Sustainable Development, 15(3), 148-159, 2007.
  • Rennings K., Redefining innovation - Ecoinnovation research and the contribution from ecological economics, Ecological Economics, 32(2), 319-332, 2000.
  • Rennings K., Ziegler A., Ankele K., Hoffmann E., The influence of different characteristics of the EU environmental management and auditing scheme on technical environmental innovations and economic performance, Ecological Economics, 57(1), 45-59, 2006.
  • Rennings K., Zwick T., The employment impact of cleaner production on the firm level-empirical evidence from a survey in five European countries, International Journal of Innovation Management, 6(3), 319-342, 2002.
  • Di Domenico M., Tracey P., Haugh H., The dialectic of social exchange: Theorizing corporate-social enterprise collaboration, Organization Studies, 30, 887-907, 2009.
  • Horbach J., Rammer C., Rennings K., Determinants of eco-innovations by type of environmental impact - the role of regulatory push/pull, technology push and market pull, Ecological Economics, 78, 112-122, 2012.
  • Boons F., Lüdeke-Freund F., Business models for sustainable innovation: state-of-the-art and steps towards a research agenda, Journal of Cleaner Production, 45, 9-19, https://doi.org/10.1016/ j.jclepro.2012.07.007.
  • Hall J., Clark W.W., Special issue: environmental innovation, Journal of Cleaner Production, 11(4), 343-346, 2003.
  • Hall J., Vredenburg H., The challenge of innovating for sustainable development, MIT Sloan Management Review, 45(1), 61, 2003.
  • Hart S.L., Milstein M.B., Global sustainability and the creative destruction of industries, MIT Sloan Management Review, 41(1), 23, 1999.
  • Huisingh D., Tukker A., Lozano R., Quist J., Knowledge collaboration & learning for sustainable innovation: an introduction to this special volume, Journal of Cleaner Production, 48(6), 1-2, 2013.
  • Matos S., Silvestre B., Managing stakeholder relations when developing sustainable business models: the case of the Brazilian energy sector, Journal of Cleaner Production, 45, 61-73, 2013.
  • Silvestre B.S., A hard nut to crack! Implementing supply chain sustainability in an emerging economy, Journal of Cleaner Production, 96, 171-181, 2015.
  • Wüstenhagen R., Hamschmidt J., Sharma S., Starik M., Sustainable innovation and entrepreneurship, Northampton, MA, USA: Edward Elgar Publishing Limited, 2008.
  • Hall J., Matos S., Gold S., Severino L.S., The paradox of sustainable innovation: the 'Eroom' effect (Moore's law backwards), Journal of Cleaner Production, 172, 3487-3497, https://doi.org/10.1016/ j.jclepro.2017.07.162.
  • Przychodzen W., Przychodzen J., Sustainable innovations in the corporate sector - the empirical evidence from IBEX 35 firms, Journal of Cleaner Production, 172, 3557-3566, https://doi.org/10.1016/ j.jclepro.2017.05.087.
  • Steward F., Conway S., Situating discourse in environmental innovation networks, Organization, 5(4), 479-502, 1998.
  • Horbach J., Determinants of environmental innovation e new evidence form German panel data sources, Research Policy, 37, 163-173, 2008.
  • Rappai G., A statisztikai modellezés filozófiája, Statisztikai Szemle, 88(2), 121-140, 2010.
  • Babbie E., A társadalomtudományi kutatás gyakorlata (The Practice of Social Research), Budapest: Balassi Kiadó, 2001.
  • Kása R., Predicting innovation performance via fuzzy-neuro networks - a model architecture, [in:] A.K. Sing, C.C. Aktan, I. Sirkeci, O. Dalbay [Eds.], Industrial Organization: Theory and Empirical Applications: ICSS 2009 International Conference on Social Sciences (pp. 299-310), Izm´ır: Social Sciences Research Society, 2009.
  • Kása R., Neurális fuzzy rendszerek alkalmazása a társadalomtudományi kutatásban az innovációs potenciál mérésére, Miskolci Egyetem, 2011.
  • Szakály D., Kása R., Felderítés és vadászat: A paradigmaváltás új fókusza - a technomenedzsment térhódítása, Magyar Minőség, XX(5), 34-45, 2011.
  • Cheng C.-F., Chang M.-L., Li C.-S., Configural paths to successful product innovation, Journal of Business Research, 66(12), 2561-2573, https://doi.org/10.1016/j.jbusres.2012.10.006.
  • Imanov G., Akbarov R., Aslanov Z., Fuzzy analysis of national innovation development, Procedia Computer Science, 102, 289-293, https://doi.org/ 10.1016/j.procs.2016.09.403.
  • Khedhaouria A., Thurik R., Configurational conditions of national innovation capability: a fuzzy set analysis approach, Technological Forecasting and Social Change, 120, 48-58, 2017, https://doi.org/10.1016/j.techfore.2017.04.005.
  • Gupta H., Barua M.K., A framework to overcome barriers to green innovation in SMEs using BWM and Fuzzy TOPSIS, Science of The Total Environment, 633, 122-139, 2018, https://doi.org/ 10.1016/j.scitotenv.2018.03.173.
  • Nilashi M., Ahmadi H., Ahani A., Ravangard R., Ibrahim O. bin., Determining the importance of Hospital Information System adoption factors using Fuzzy Analytic Network Process (ANP), Technological Forecasting and Social Change, 111, 244-264, 2016, https://doi.org/10.1016/ j.techfore.2016.07.008.
  • Serrano García J., Acevedo Álvarez C.A., Castelblanco Gómez J.M., Arbeláez Toro J.J., Measuring organizational capabilities for technological innovation through a fuzzy inference system, Technology in Society, 50, 93-109, 2017, https://doi.org/10.1016/ j.techsoc.2017.05.005.
  • Stock T., Obenaus M., Slaymaker A., Seliger G., A Model for the Development of Sustainable Innovations for the Early Phase of the Innovation Process, Procedia Manufacturing, 8, 215-222, 2017, https://doi.org/10.1016/j.promfg.2017.02.027.
  • Krušinskas R., Benetytė R., Management problems of investment in technological innovation, using artificial neural network, Procedia - Social and Behavioral Sciences, 213, 442-447, 2015, https://doi.org/10.1016/j.sbspro.2015.11.431.
  • Wang T.Y., Chien S.C., Forecasting innovation performance via neural networks - a case of Taiwanese manufacturing industry, Technovation, 26(5-6), 635-643, 2004, https://doi.org/10.1016/ j.technovation.2004.11.001.
  • Wong T.C., Wong S.Y., Chin K.S., A neural network-based approach of quantifying relative importance among various determinants toward organizational innovation, Expert Systems qith Applications, 38(10), 13064-13072, 2011, https://doi.org/ 10.1016/j.eswa.2011.04.113.
  • Fazekas I., Neurális hálózatok, Debrecen: Debreceni Egyetem, Informatikai Kar, 2013.
  • Fuller R., Neural fuzzy systems, Turku, Finnland: ĹLbo Akademi University, 1995.
  • Kása R., Neuráalis háalók alkalmazáasának lehetőségei innovációs teljesítmény méerésére, Logisztika, Informatika, Menedzsment, 3(1), 60-73, 2018.
  • Brown M., Harris C.J., Neurofuzzy adaptive modelling and control, Upper Saddle River, New Jersey: Prentice Hall, 1994.
  • Jang J.-R., Sun C.-T., Neuro-fuzzy modeling and control, Proceedings of the IEEE, 83(3), 378-406, 1995, https://doi.org/10.1109/5.364486.
  • Johanyák Z.C., Kovács S., Neuro-fuzzy módszerek alkalmazása a kísérletmódszertanban, A GAMF Közleményei, 20, 37-48, 2005.
  • Gubán M., Gubán Á., Optimal establishment of assembly plants with genetic algorithm, Informatika, 13(2), 31-35, 2011.
  • Kása R., Predicting innovation performance via fuzzy-neuro networks - a model architecture, [in;] A.K. Sing, C.C. Aktan, I. Sirkeci, O. Dalbay [Eds.], Industrial Organization: Theory and Empirical Applications: ICSS 2009 International Conference on Social Sciences (pp. 299-310), Izmír: Social Sciences Research Society, 2009.
  • Kása R., Approximating innovation potential with neurofuzzy robust model, Investigaciones Europeas de Dirección y Economía de La Empresa, 21(1), 35- 46, 2015.
  • Gubán Á., Gubán M., Hua N.S., Információ, Adat, Intelligencia, Budapest: Saldo, 2012.
  • Cheng C.B., Lee E.S., Applying fuzzy adaptive network to fuzzy regression analysis, Computers & Mathematics with Applications, 38(2), 1999, https://doi.org/doi.org/10.1016/S0898-1221(99) 00187-X.
  • Fan Z.P., Hu G.F., Xiao S.H., A method for multiple attribute decision-making with the fuzzy preference relation on alternatives, Computers & Industrial Engineering, 46(2), 321-327, 2004.
  • Tsai M., Wang C., A computing coordination based fuzzy group decision-making (CC-FGDM) for web service oriented architecture, Expert Systems with Applications, 34(4), 2921-2936, 2007, https://doi.org/10.1016/j.eswa.2007.05.017.
  • Deptuła A.M., Rudnik K., Fuzzy approach using experts' psychological conditions to estimate the criteria importance for the assessment of innovative projects risk, Management and Production Engineering Review, 9(1), 13-23, 2018, http://mper.org/ mper/images/archiwum/2018/nr1/2-deptula.pdf.
  • Lambovska M., A fuzzy model for team control and its application, Management and Production Engineering Review, 9(3), 108-119, 2018, http://mper.org/mper/images/archiwum/2018/nr3/12-lambovska.pdf.
  • Sugeno M., An introductory survey of fuzzy control, Information Science, 36(1-2), 59-83, 1985.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171560991

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.