PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | No. 45 | 133--147
Tytuł artykułu

Forest Stand Biomass of Picea spp.: an Additive Model That May be Related to Climate and Civilisational Changes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since ancient times, climate change has largely determined the fate of human civilisation, which was related mainly to changes in the structure and habitats of forest cover. In the context of current climate change, one must know the capabilities of forests to stabilise the climate by increasing biomass and carbon-depositing abilities. For this purpose, the authors compiled a database of harvest biomass (t/ha) in 900 spruce (Picea spp.) sample plots in the Eurasian area and used the methodology of multivariate regression analysis. The first attempt at modelling changes in the biomass additive component composition has been completed, according to the Trans-Eurasian hydrothermal gradients. It is found that the biomass of all components increases with the increase in the mean January temperature, regardless of mean annual precipitation. In warm zonal belts with increasing precipitation, the biomass of most of the components increases. In the process of transitioning from a warm zone to a cold one, the dependence of all biomass components upon precipitation is levelled, and at a mean January temperature of ˗30°C it becomes a weak negative trend. With an increase in temperature of 1°C in different ecoregions characterised by different values of temperature and precipitation, there is a general pattern of decrease in all biomass components. With an increase in precipitation of 100 mm in different ecoregions characterised by different values of temperature and precipitation, most of the components of biomass increase in warm zonal belts, and decrease in cold ones. The development of such models for the main forest-forming species of Eurasia will make it possible to predict changes in the productivity of the forest cover of Eurasia due to climate change. (original abstract)
Rocznik
Numer
Strony
133--147
Opis fizyczny
Twórcy
  • Ural State Forest Engineering University, Russian Federation; Russian Academy of Sciences, Russian Federation
  • Nicolaus Copernicus University, Poland
  • Ural State Forest Engineering University, Russian Federation
  • Russian Academy of Sciences, Russian Federation
  • Ural State Forest Engineering University, Russian Federation
autor
  • Nicolaus Copernicus University, Poland
Bibliografia
  • Alcamo, J. Moreno, J.M. Nováky, B. Bindi, M. Corobov, R. Devoy, R.J.N. Giannakopoulos, C. Martin, E. Olesen, J.E. and Shvidenko, A. (2007). Europe: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds.). Climate change. Cambridge University Press, Cambridge. 541-580.
  • Anderson, K.J. Allen, A.P. Gillooly, J.F. and Brown, J.H. (2006). Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters. 9: 673-682.
  • Baskerville, G.L. (1972). Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research. 2: 49-53.
  • Behrensmeyer, A. (2006). Atmosphere. Climate change and human evolution. Science. 311 (5760): 476-478. doi: https://doi.org/10.1126/science.1116051.
  • Bobrov, E.G. (1978). Forest-forming conifers of the USSR. Leningrad: Nauka Publishing. 188 pp. (Rus.).
  • D'Aprile, F. Tapper, N. and Marchetti, M. (2015). Forestry under climate change. Is time a tool for sustainable forest management? Open Journal of Forestry. 5: 329-336.
  • DeLucia, E.H. Maherali, H. and Carey, E.V. (2000). Climate-driven changes in biomass allocation in pines. Global Change Biology. 6(5): 587-593. DOI: https:// doi.org/10.1046/j.1365-2486.2000.00338.x
  • Dong, L. Zhang, L. and Li, F. (2015). A three-step proportional weighting system of nonlinear biomass equations. Forest Science. 61(1): 35-45.
  • Eggers, J. Lindner, M. Zudin, S. Zaehle, S. and Liski, J. (2008). Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology. 14: 2288-2303.
  • Emanuel W.R. Shugart H.H. and Stevenson M.P. (1985). Climate change and the broad scale distribution of terrestrial ecosystem complexes. Climate Change. 7: 29-43.
  • Fang O. Yang Wang Y. and Shao X. (2016). The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. Trees. 30: 281-294. DOI https://doi. org/10.1007/s00468-015-1300-6.
  • Felton A. Nilsson U. Sonesson J. Felton A.M. Roberge J.-M., Ranius T. Ahlström M. Bergh J. Bjorkman C. Boberg J. Drössler L. Fahlvik N. Gong P. Holmström E. Keskitalo E.C.H. Klapwijk M.J. Laudon H. Lundmark T. Niklasson M. Nordin A. Pettersson M. Stenlid J. Sténs A. and Wallertz K. (2016). Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio. 45 (Supplement 2): 124-139.
  • Fu L. Lei X. Hu Z. Zeng W. Tang Sh. Marshall P. Cao L. Song X. Yu Li. and Liang J. (2017). Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China. Annals of Forest Science. 74(42): 1-15. DOI https://doi.org/10.1007/s13595-017-0636-z
  • Geiger R. (1954). Klassifikation der Klimate nach W. Köppen. Landolt-Börnstein - Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie. Berlin: Springer. 3: 603-607.
  • Glebov, F.Z. Litvinenko, V.I. (1976). The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests. Lesovedenie. 4: 56-62. (Rus.).
  • Halofsky J.S. Conklin D.R. Donato D.C. Halofsky J.E. and Kim J.B. (2018). Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A. PLoS ONE 13(12): e0209490. https://doi.org/10.1371/journal. pone.0209490.
  • Han S.H. Kim S. Li G. Chang H. Yun S.J. Jiae An J. and Son Y. (2018). Effects of warming and precipitation manipulation on fine root dynamics of Pinus densiflora Sieb. et Zucc. Seedlings. Forests. 9: 14. doi: https:// doi.org/10.3390/f9010014.
  • Huston M.A. and Wolverton S. (2009). The global distribution of net primary production: resolving the paradox. Ecological Monographs. 79(3): 343-377. DOI: https://doi.org/10.1890/08-0588.1
  • Il'inskiy A.P. (1937).The vegetation of the globe. Moscow; Leningrad: Academy of Sciences of USSR. 458 pp. (Rus.).
  • Keeling H.C. and Phillips O.L. (2007). The global relationship between forest productivity and biomass. Global Ecology and Biogeography. 16: 618-631. DOI: https://doi.org/10.1111/j.1466-8238.2007.00314.x
  • Köppen W. (1918). Klassification der Klimate nach Temperatur, Niederschlag and Jahreslauf. Petermanns Geographische Mitteilungen. 64: 193-203, 243-248.
  • Kosanic A. Anderson K. Harrison S. Turkington T., and Bennie J. (2018). Changes in the geographical distribution of plant species and climatic variables on the West Cornwall Peninsula (South West UK). PLoS ONE. 13 (2): e0191021 https://doi.org/10.1371/journal.pone.0191021.
  • Laczko F. and Aghazarm Ch. (2009). Migration, Environment and Climate Change: Assessing the Evidence. Geneva, International Organization for Migration. 441 pp. https://publications.iom.int/system/files/pdf/migration_and_environment.pdf.
  • Laing J. and Binyamin J. (2013). Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change. 2: 275283. DOI: https://doi.org/10.4236/ajcc.2013.24027.
  • Liang J. Crowther T.W. Picard N. Wiser S. Zhou M. Alberti G. Schulze E.-D. McGuire A. D. Bozzato F. Pretzsch H. de-Miguel S. Paquette A. Hérault B. Scherer-Lorenzen M. Barrett C. B. Glick H. B. Hengeveld G.M. Nabuurs G.-J. Pfautsch S. Viana H. Vibrans A.C. Ammer C. Schall P. Verbyla D. Tchebakova N.M. Fischer M. Watson J.V. Chen H.Y.H. Lei X. Schelhaas M.-J. Lu H. Gianelle D. Parfenova E.I. Salas C. Lee E. Lee B. Kim H.S. Bruelheide H. Coomes D.A. Piotto D. Sunderland T. Schmid B. Gourlet-Fleury S. Sonké B. Tavani R. Zhu J. Brandl S. Vayreda J. Kitahara F. Searle E.B. Neldner V.J. Ngugi M.R. Baraloto C. Frizzera L. Bałazy R. Oleksyn J. Zawiła-Niedźwiecki T. Bouriaud O. Bussotti F. Finér L. Jaroszewicz B. Jucker T. Valladares F. Jagodzinski A.M. Peri P.L. Gonmadje C. Marthy W. O'Brien T. Martin E.H. Marshall A.R. Rovero F. Bitariho R. Niklaus P. A. Alvarez-Loayza P. Chamuya N. Valencia R. Mortier F. Wortel V. Engone-Obiang N.L. Ferreira L.V. Odeke D.E. Vasquez R.M. Lewis S.L. and Reich P.B. (2016). Positive biodiversity - productivity relationship predominant in global forests. Science. 354 (6309): 196-208. DOI: https://doi. org/10.1126/science.aaf/8957..
  • Lieth H. (1974). Modeling the primary productivity of the world. International Section for Ecology Bulletin. 4: 11-20.
  • Luo T.X. (1996). Patterns of biological production and its mathematical models for main forest types of China. Ph.D. Dissertation. Committee of Synthesis Investigation of Natural Resources, Chinese Academy of Sciences. Beijing. 211. (in Chinese with English abstract).
  • Miao Z. and Li C. (2011). Predicting tree growth dynamics of boreal forest in response to climate change. In: C. Li et al. (eds.). Landscape Ecology in Forest Management and Conservation. Berlin, Heidelberg: Higher Education Press, Beijing and Springer-Verlag, 176-205.
  • Miles-Novelo A. and Anderson C. A. (2019). Climate Change and Psychology: Effects of Rapid Global Warming on Violence and Aggression. Current Climate Change Reports, 5: 36-46. https://doi. org/10.1007/s40641-019-00121-2.
  • Molchanov, A.A. (1976). Dendro-climatic fundamentals of weather forecasts. Мoscow, Nauka Publ., 168 pp. (Rus.).
  • Ni J. Zhang X.-S. and Scurlock J.M.O. (2001). Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science. 58: 351384 (www.edpsciences.org).
  • Paquette A. Vayreda J. Coll L. Messier C. and Retana J. (2018). Climate change could negate positive tree diversity effects on forest productivity: A study across five climate types in Spain and Canada. Ecosystems. 21 (5): 960-970 DOI: https://doi.org/10.1007/s10021017-0196-y
  • Pastore M. Lee T. Hobbie S.E. and Reich P.B. (2019). Strong photosynthetic acclimation and enhanced water-use efficiency in grassland functional groups persist over 21 years of CO2 enrichment, independent of nitrogen supply. Global Change Biology. May. DOI: https://doi.org/10.1111/gcb.14714.
  • Poudel B.C. Sathre R. Gustavsson L. Bergh J. Lundström A. and Hyvönen R. (2011). Effects of climate change on biomass production and substitution in north-central Sweden. Biomass and Bioenergy. 35 (10): 4340-4355.
  • Radkau J. (2008). Nature and Power: A Global History of the Environment. Translated by Thomas Dunlap. German Historical Institute and Cambridge University Press. 430 pp.
  • Sanquetta C.R. Behling A. Corte1 A.P.D. Netto S.P. Schikowski A.B. and do Amaral M.K. (2015). Simultaneous estimation as alternative to independent modeling of tree biomass. Annals of Forest Science. 72: 1099-1112.
  • Schwarz F. (1899). Physiologische Untersuchungen über Dickenwachstum und Holzqualität von Pinus sylvestris. Berlin: P. Parey. 404 pp.
  • Shuman J.K. and Shugart H.H. (2009). Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model. Environmental Research Letters. 4(4): 1-7.
  • Spathelf P. Stanturf J. Kleine M. Jandl R. Chiatante D. and Bolte A. (2018). Adaptive measures: integrating adaptive forest management and forest landscape restoration. Annals of Forest Science. 75(2): 55. https:// doi.org/10.1007/s13595-018-0736-4
  • Stegen J.C. Swenson N.G. Enquist B.J. White E.P. Phillips O.L. Jorgensen P.M. Weiser M.D. Mendoza A.M. and Vargas P.N. (2011). Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography. 20(5): 744-754 https:// doi.org/10.1111/j.1466-8238.2010.00645.x.
  • Strömgren M. and Linder S. (2002). Effects of nutrition and soil warming on stem wood production of a boreal Norway spruce stand. Global Change Biology. 8: 1195-1204.
  • Sukachev V.N. (1938). Dendrology with the fundamentals of forest of geobotany. The 2nd ed. Leningrad: Roslestekhizdat Publishing. 576 pp. (Rus.).
  • Tang S. Zhang H. and Xu H. (2000). Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinica. 36: 19-27 (in Chinese with English abstract).
  • Toman M.A. Firor J. and Darmstadter J. (1996). Climate Change and Its Consequences. Resources for the Future. 124: 10-13.
  • Usoltsev V.A. (2004). On the application of regression analysis in forestry problems. Lesnaya Taksatsiya I Lesoustroistvo (Forest Mensuration and Management). 1(33): 49-55 (Rus.).
  • Usoltsev V.A. (2013). Forest biomass and primary production database for Eurasia. CD-version. The second ed. enlarged and re-harmonized. Yekaterinburg: Ural State Forest Engineering University. http://elar.usfeu. ru/handle/123456789/3059 .
  • Usoltsev V.A. (2019). Forest Arabesques, or Sketches of Our Trees' Life. 3rd edition, modified. Radomska Szkoła Wyższa w Radomiu. Radom, Poland. 200 pp. DOI: http://dx.doi.org/10.5281/zenodo.2551187.
  • Usoltsev V.A. Shobairi S.O.R. Tsepordey I.S. Chasovskikh V.P. (2018). Modeling the additive structure of stand biomass equations in climatic gradients of Eurasia. Environmental Quality Management. 28(2): 55- 61. https://doi.org/10.1002/tqem.21603.
  • Usoltsev V.A. Konôpka B. Merganičová K. Osmirko A.A. Tsepordey I.S. and Chasovskikh V.P. (2019a). Fir stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Journal. 3-4 (in press).
  • Usoltsev V. Kovyazin V. Osmirko A. Tsepordey I. and Chasovskikh V. (2019b). Additive model of Larix sp. forest stand biomass sensitive to temperature and precipitation variables in Eurasia. IOP Conference Series: Earth and Environmental Science. (in press) http:// iopscience.iop.org/journal/1755-1315 .
  • Usoltsev, V. Piernik, A. Osmirko, A.A. Tsepordey, I.S. Chasovskikh, V.P. and Zukow, W. (2019). List of 900 sites with biomass data representing Picea spp. used for the construction of additive models. http://doi. org/10.5281/zenodo.3246255 .
  • Wilmking M. Juday G.P. Barber V.A. and Zald H.S.J. (2004). Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology. 10: 1724-1736. World Weather Maps (2007). URL: https://www.mapsofworld.com/referrals/weather/
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171566572

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.