PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 10 | nr 3 | 90--96
Tytuł artykułu

Industrial Engineering Education - Challenging Complexity by Simple Means

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial engineers gather knowledge during their bachelor studies through lectures and practical classes. The goal of practical class might be an extension of knowledge and/or a consolidation and application of already gathered knowledge. It is observed that there exists a gap between theory learnt during lectures and practical classes. If practical classes require holistic approach and solving complex tasks (problems), students strive with understanding relations and connections between parts of knowledge. The aim of this article is to show an example of a simple practical assignment that can serve as a bridge between lectures and practical classes through discussion of interactions and relations between parts of theoretical knowledge. It is an example of in-class simulating of a line and cellular layout considering discussion of elements impacting and impacted by the type of layout (e.g. learning curve, changeovers, etc.). In-class verification of the presented approach confirmed its usability for teaching industrial engineers and bridging the gap between theory delivered through lectures and more advanced practical classes. (original abstract)
Rocznik
Tom
10
Numer
Strony
90--96
Opis fizyczny
Twórcy
  • Warsaw University of Technology, Poland
Bibliografia
  • Nitkiewicz T., Ayen Z., Identifying key criteria in development of Industrial Engineering education, MATEC Web of Conferences (12th International Conference Quality Production Improvement), 183(04008), 1-4, 2018, doi: 10.1051/matecconf/201818304008.
  • Bailey T., Hurst A., Teaching Line Balancing through Active and Blended Learning, Decision Sciences Journal of Innovative Education, 2, 82-103, 2018, doi: 10.1111/dsji.12148.
  • Kerr B., The flipped classroom in engineering education: A survey of the research, EEE International Conference on Interactive Collaborative Learning (ICL), pp. 815-818, 2015.
  • Braghirolli L.F., Ribeiro J.L.D., Weise A.D., Pizzolato M., Benefits of educational games as an introductory activity in industrial engineering education, in Computers in Human Behavior, 58, 315- 324, 2016, doi: 10.1016/j.chb.2015.12.063.
  • Nazzal D., Zabinski J., Hugar A., Reinhart D., Karwowski W., Madani, K., Introduction of Sustainability Concepts into Industrial Engineering Education: A Modular Approach, Advances in Engineering Education, 4, 4, 1-31, 2015, available at: https://files.eric.ed.gov/fulltext/EJ1077845.pdf [Accessed 10 Feb. 2019].
  • Colombo C., Alves A., Moreira F., van HattumJanssen N., A study on impact of the UN Decade of Education for Sustainable Development on Industrial Engineering Education, Dirección y Organización, 56, 4-9, 2015, available at: http://ww.revistadyo.com/index.php/dyo/article/ view/469 [Accessed 10 Feb. 2019].
  • Gladysz B., Jarzebowska E., International projectoriented training of engineers based on the example of the European Engineering Team, in e-mentor, 74, 2, 63-72, 2018, doi: 10.15219/em74.1354.
  • Norgaard B., Nolan D., Polman T., Delfsma A., Parviainen E., Upanne I., Bayard O., Areskoug, M., Work-based Learning -in Industrial Engineering, 43rd Annual SEFI Conference, [online] Orléans: Société Européenne pour la Formation des Ingénieurs, available at: https://www.sefi.be/wpcontent/uploads/2017/09/56595-B.-NORGAARD.pdf [Accessed 28 Jan. 2019].
  • Alves A.C., Leão C.P., Action, practice and research in project based learning in an industrial engineering and management program, ASME 2015 International Mechanical Engineering Congress and Exposition, Houston: American Society of Mechanical Engineers, pp. V005T05A013-V005T05A013, 2015, doi: 10.1115/IMECE2015-51438.
  • Lynch P.C., Bober C., Wilck, J., An integrated approach to developing business expertise in industrial engineering students, 122nd ASEE Annual Conference and Exposition, Seattle: American Society of Engineering Education, 2015, doi: 10.18260/p.23530.
  • Stefanovic M., The objectives, architectures and effects of distance learning laboratories for industrial engineering education, Computers & Education, 69, 250-262, 2013, doi: 10.1016/j.compedu.2013.07.01.
  • Stefanovic M., Matijevic M., Cvijetkovic V., Remote Controlled Laboratory Experiments on the Web, International Journal of Industrial Engineering - Theory Applications and Practice, 18, 3, 130-139, 2011.
  • Jaeger A., Mayrhofer W., Kuhlang P., Matys K., Sihn W., Total Immersion: Hands and Heads-On Training in a Learning Factory for Comprehensive Industrial Engineering Education, International Journal of Engineering Education, 29, 1, 23-32, 2013.
  • Daggett D., Alptekin S., Industrial engineering made simple, Calpoly Website, 1999, available at: https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1011&context=ime fac [accessed 31 Jan. 2019].
  • Hosseini-Nasab H., Fereidouni S., Ghomi S.M.T.F., Fakhrzad M.B., Classification of facility layout problems: a review study, International Journal of Advanced Manufacturing Technology, 94, 1-4, 957- 977, 2018.
  • Azambuja M.J.C., Grimoni J.A.B., Coelho L.G., Learning Theories applied in Engineering Education: a case study, 7th IEEE World Engineering Education Forum (WEEF), pp. 915-919, 2017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171568691

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.