Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 2 | nr 1 | 27--33
Tytuł artykułu

Analysis of Vortex Finder Geometry And its Influence on Cyclone's Efficiency and Wearing Processes y Computational Fluid Dynamics

Treść / Zawartość
Warianty tytułu
Języki publikacji
Cyclones are widely used for removal dust of gaseous flows in industrial processes, and various studies were conducted in last decades to improve their performance parameters. However, in process industry, the reliable and uninterrupted operation of the cyclone is of the same importance as performance capabilities. In this work, the effect of vortex finder geometry on wearing processes is analyzed. The work relates to the gas-solid flow, which can be found in real dry-process kiln systems used in cement plants. Numerical studies were performed using Computational Fluid Dynamics software package, and covered three different geometrical versions of analyzed object. The relevant velocities of gas-solid medium within the cyclone, as well as pressure values were calculated with help of DES turbulence model. As a result - the design variant offering best balance between performance parameters and wearing resistance was pointed out.(original abstract)
Opis fizyczny
  • ABB Corporate Research, Poland
  • Cracow University of Technology, Poland
  • Cracow University of Technology, Poland
  • Meier H.F. and Mori M., Anisotropic Behavior of the Reynolds Stress in Gas and Gas-Solid Flows in Cyclones, Powder Technology, 101, 108-119, 1999.
  • Hoffman A.C. and Stein L.E., Gas Cyclones and Swirl Tubes: Principles, Design, Operation, Springer-Verlag, Berlin, 2002.
  • Boysan F., AyersW.H., and Swithenbank J.A., Fundamental Mathematical Modeling Approach to Cyclone Design, Trans. Inst. Chem. Eng., 60, 222-230, 1982.
  • Hoekstra A.J., Derksen J.J., and Van Den Akker H.E.A., An experimental and numerical study on turbulent swirling flow in gas cyclones, Chemical Engineering Science, 54, 2055-2056, 1999.
  • Sommerfeld M., Ho C.H., Numerical calculation of particle transport in turbulent wall bounded flows, Powder Technology, 131, 1-6, 2003.
  • Wang B., Xu D., Xiao G. and Yu A., Numerical study on gas-solid flow in a cyclone separator, Pro- ceedings of 3rd International Conference of CFD in the Minerals an Process Industry, Melbourne, Aus- tralia, 10-12 December, 2003.
  • Singh V., Srivastava R., Vitankar V., and Basu B., Simulation of gas-solid flow and design modifica- tions of cement plant cyclones, Proceedings of Fifth International Conference of CFD in the Process Industry, Melbourne, Australia, 13-15 December, 2006.
  • Noriler D., Vegini A., Soares C., Barros A., and Meier H., A new role of reduction in pressure drop in cyclones using computational fluid dynamics tech- niques, Journal if Chemical Engineering, 21 (01), 93-101, 2004.
  • Ficici F., Ari V., and Kapsiz M., The effects of vor- tex finder on the pressure drop in cyclone separators, International Journal of the Physical Sciences, 5 (6), 804-813, 2010.
  • Hoekstra A.J., Derksen J.J., and Van Den Akker H.E.A., An experimental and numerical study of turbulent swirling flow in gas cyclones, Chemical Engineering Science, 54, 2055-2065, 1999.
  • Ingham D.B. and Ma L., Predicting the performance of air cyclones, International Journal of Energy Re- search, 26 (7), 633-652, 2002.
  • Shalaby H., On the potential of large eddy simula- tion to simulate cyclone separators, PhD Disserta- tion, Chemnitz University of Technology, 2007.
  • Pisarev G.I., Hoffmann A.C., Peng W., and Dijk- strac H.A., Large Eddy Simulation of the vortex end in reverse-flow centrifugal separators, Applied Mathematics and Computation, 217 (11), 5016- 5022, 2011.
  • Boysan F., Swithenbank J.A., and Ayers W.H., Mathematical modeling of gas-particle flows in cy- clone separators, Encyclopedia of Fluid Mechan- ics, Volume 4, Gulf Publishing Company, Houston, Texas, 1986.
  • Utikar R., Darmawan N., Tade Evans G., and Glen- ny M., Hydrodynamic Simulation of Cyclone Sep- arators, Computational Fluid Dynamics, InTech Publisher, 2010.
  • Peng W., Hoffmann A.C., Dries H.W.A., Regelink M.A., and Stein L.E., Experimental study of the vor- tex end in centrifugal separators: The nature of the vortex end, Chemical Engineering Science, 60 (24), 6919-6928, 2005.
  • Finnie I., Some reflections on the past and future of erosion, Wear, 186 (1), 1-10, 1995.
  • Khalil Y.K., and Rosner D.E, Erosion rate predic- tion and correlation technique for ceramic surfaces exposed to high speed flows of abrasive suspensions, Wear, 201 (1-2),64-79, 1996.
  • Fan J., Yao J., Zhang X., and Cen K., Experimen- tal and numerical investigation of a new method for protecting bends from erosion in gas-particle flows, Wear, 251 (1-12), 853-860, 2001.
  • Sommerfeld M., Validation of a stochastic La- grangian modelling approach for inter-particle colli- sions in homogeneous isotropic turbulence, Interna- tional Journal of Multiphase Flow, 27 (10), 1829- 1858, 2001.
  • Schade K. et al., Experimental and numerical inves- tigation of particle erosion caused by pulverized fuel in channels and pipework of coal-fired power plant, Powder Techn., 125, 242-250, 2002.
  • Cort´es C. and Gil A., Modeling the gas and particle flow inside cyclone separators, Progress in Energy and Combustion Science, 33, 409-452, 2007.
  • Fidaros D.K., Baxevanou C.A., Dritselis C.D., and Vlachos N.S., Numerical modelling of flow and transport processes in a calciner for cement produc- tion, Powder Techn., 171, 81-95, 2007.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.