Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 1 | nr 2 | 47--55
Tytuł artykułu

Prediction of Surface Roughness Using a Feed-Forward Neural Network

Treść / Zawartość
Warianty tytułu
Języki publikacji
This article presents the development of a system for predicting surface roughness, using a feed-forward neural network. The primary goal was to develop a system in order to predict with complex reliability and defined accuracy. However, this system is designed in such a way that it is also possible to use it for various other workpieces. The described system uses a neural network which receives signals at the input level. The signals then travel through all hidden levels to the output level, where the responses to input signals are received. Data are used which affects the selection of surface roughness regarding the input to the neural network. Three different inputs in total are used for the neural network. Data which represents the inputs to the neural network are encoded, so that they occupy values between 0 and 1. Adequate cutting speed, feed, and depth of cut, are selected in order to achieve an adequate surface roughness of the workpiece, using the trained neural network. This contributes to the optimisation and economy of machining, which is very important during the production of an individual product and also for an individual company or organisation when transferring the final product to the contracting authority or final customer. (original abstract)
Słowa kluczowe
Opis fizyczny
  • University of Maribor, Slovenia
  • University of Maribor, Slovenia
  • University of Maribor, Slovenia
  • University of Maribor, Slovenia
  • Cus F., High-Speed Milling and Special Machining Methods, University of Maribor, Faculty of Mechanical Engineering, Maribor, (Čuš F. (2004), Visokohitrostno frezanje in posebni postopki obdelave, Univerza v Mariboru, Fakulteta za strojništvo, Maribor) (2004).
  • Stephenson D.A., Agapiou J.S., Metal Cutting Theory and Practice Second Edition, CRC Taylor & Francis Group, Boca, Raton, London, New York 2006.
  • Carboloy, HI-F (HI Efficiency Machining) Technical Information Catalog, Inc. 1993.
  • Chien W.T., Tsai C.S., The investigation on the prediction of tool wear and the determination of optimum cutting condition in machining 17-4PH stainless steel, Journal of Materials Processing Technology, 140, 1-3, 340-345, 2003.
  • Benardos P.G., Vosniakos G.C., Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments, Robotics and Computer-Integrated Manufacturing, 18, 5-6, 343-354, 2002.
  • Karayel D., Prediction and control of surface roughness in CNC lathe using artificial neural network, Journal of Materials Processing Technology, 209, 7, 3125-3137, 2009.
  • Huang B.P., Chen J.C., Li Y., Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations, Neurocomputing, 71, 4-6, 544-549, 2008.
  • Feng C.-X., Wang X., Yu Z., Neural Networks Modeling of Honing Surface Roughness Parameters Defined by IS013565, Journal of Manufacturing Systems, 21, 5, 395-408, 2002.
  • Özel T., Karpat Y., Predictive modeling of Surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools and Manufacture, 45, 4-5, 467-479, 2005.
  • Oktem H., Erzurumlu T., Erzincanli F., Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Materials & Design, 27, 9, 735-744, 2006.
  • Çaydaş U., Hasçalık A., A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method, Journal of Materials Processing Technology, 202, 1-3, 574-582, 2008.
  • El-Sonbaty I.A., Khashaba U.A., Selmy A.I., Ali A.I., Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach, Journal of Materials Processing Technology, 200, 1-3, 271-278, 2008.
  • Nalbant M., Gökkaya H., Tokta¸s I., Sur G., The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks, Robotics and Computer-IntegratedManufacturing, 25, 1, 211-223, 2009.
  • Korosec M., Kopac J., Improved surface roughness as a result of free-form surface machining using self-organized neural network, Journal of Materials Processing Technology, 204, 1-3, 94-102, 2008.
  • Balakrishnan P., DeVries M.F., A review of computerized machinability data base systems, Proceedings NAMRC, 348-356, 1982.
  • Gopalakrishnan B., Computer integrated machining parameter selection in a job shop using expert systems, Journal of Mechanical Working Technology, 20, 163-170, 1989.
  • Zeng L., Wang H.P., A patchboard-based expertsystems model for manufacturing applications, International Journal of Advanced Manufacturing Technology, 7, 38-43, 1992.
  • Sathyanarayanan G., Lin I.J., Chen M.K., Neural network modeling and multiobjective optimization of creep feed grinding of superalloys, International Journal of Production Research, 30, 10, 2421-2438, 1992.
  • Klancnik S., Ficko M., Balic J., Brezocnik M., Brezovnik S., Vaupotic B., Computerised Assistance of Turning Knife Selection by Using Feed-Forward Neural Network, Proceedings of the 30th Symposium ORODJARSTVO 2008, 81-86 (Klančnik S., Ficko M., Balič J., Brezočnik M., Brezovnik S., Vaupotič B. (2008), Računalniško podprta izbira stružnega noža s pomočjo usmerjenih nevronskih mrež, Zbornik 30, Posvetovanja ORODJARSTVO 2008, 81-86), 2008.
  • Balic J., Intelligent CAD/CAM System for CNC Programming - An Overview, Advances in Production Engineering & Management, 1, 1, 13-22, 2006.
  • Klancnik S., Senveter J., Computer-Based Workpiece Detection on CNC Milling Machine Tools Using Optical Camera and Neural Networks, Advances in Production Engineering & Management, 5, 1, 59-68, 2010.
  • Klancnik S., Balic, J., Cus F., Intelligent prediction of milling strategy using neural networks, Control Cybernetics, 39, 1, 9-22, 2010.
  • Zuperl U., Cus F., Optimization of cutting conditions during cutting by using neural networks, Robotics and Computer-Integrated Manufacturing, [Print ed.], 19, 1-2, 189-199, 2003.
  • Cus F., Zuperl U., Adaptive Self-Learning Controller Design for Feedrate Maximization of Machining Process, Advances in Production Engineering & Management, 2, 1, 18-27, 2007.
  • Cus F., Cutting Processes, University of Maribor, Faculty of mechanical engineering, Maribor, (Čuš F. (2009). Postopki odrezavnaja, Univerza v Mariboru, Fakulteta za strojništvo, Maribor), 2009.
  • Bergner O., Frömmer G., Lohr J., Kretzschmar R., Morgner D., Wieneke F., Zerspantechnik, Fachbildung, Verlag Europa-Lehrmittel Nourney, Vollmer GmbH&Co. Haan-Gruiten, 2008.
  • Vaupotic B., Intelligent Automatic Cutting Tools Selections for Turning Operation by Neural Networks, PhD Thesis, University of Maribor, Faculty of Mechanical Engineering, Maribor. (Vaupotč B. (2008), Inteligentna avtomatska izbira rezalnega orodja za operacijo stružzenja s pomočjo nevronskih mrež: doktorska disertacija, Univerza v Mariboru, Fakulteta za strojništvo, Maribor), 2008.
  • Jurković Z., Modeling and Optimization of Processing Parameters Application with Evolutionary Algorithms in Intelligent Machining Systems, PhD Thesis, University of Rijeka, Faculty of Engineering, Rijeka. (Jurković Z. (2007), Modeliranje i optimizacija parametara obrade primjenom evolucijskih algoritma kod inteligentnih obradnih sustava: doktorska), 2007.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.