PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 1 | nr 3 | 30--40
Tytuł artykułu

Optimal Buffer Allocation in Re-Entrant Job Shop Production Using Simulated Annealing

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A re-entrant job shop production is examined in the paper. An optimization model is constructed to achieve an optimal buffer allocation ensuring profit maximization. An algorithm based on simulated annealing approach is developed to solve the problem. A real industrial application in commercial offset printing is presented. Experimental results show that the proposed methodology is effective.(original abstract)
Rocznik
Tom
1
Numer
Strony
30--40
Opis fizyczny
Twórcy
  • West Pomeranian University of Technology in Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, Poland
Bibliografia
  • Buzacott J.A., Shanthikumar J.G., Design of manufacturing systems using queueing models, Queueing Systems, 12, 135-214, 1992.
  • Hung H.-C., Posner M.E., Allocation of jobs and identical resources with two pooling centers, Queueing Systems, 55, 3, 179-194, 2007.
  • Hsin R., Cho K.-H., Genetic algorithm modeling for the inspection allocation in reentrant production systems, Expert Systems with Applications, 36, 11287-11295, 2009.
  • Liu A., Yang Y., Liang X., Zhu M., Yao H., Dynamic Reentrant Scheduling Simulation for Assembly and Test Production Line, in Semiconductor Industry, Advanced Materials Research, 97-101, 2418-2422, 2010.
  • Topaloglu S., Kilincli G., A modified shifting bottleneck heuristic for the reentrant job shop scheduling problem with makespan minimization, Int. J. Adv. Manuf. Technol., 44, 781-794, 2009.
  • Kumar P.R., Re-entrant lines, Queueing Systems, 13, 87-110, 1993.
  • Hill T., Manufacturing strategy, 2nd ed., Macmillan, London, 1993.
  • Schellhorn H., A note on the first moment of makespan in an assembly shop, European Journal of Operational Research, 180, 963-969, 2007.
  • Song D.P., Hicks C., Earl C.F., Product due date assignment for complex assemblies, Int. J. ProductionfEconomics, 76, 243-256, 2002.
  • Yuzukirmizi M., Smith J.MG., Optimal buffer allocation in finite closed networks with multiplefservers, Computers & Operations Research, 35,f2579-2598, 2008.
  • Dolgui A., Eremeev A., Kolokolov A., Sigaev V., A Genetic Algorithm for the Allocation of Buffer Storage Capacities in a Production Line with Unreliable Machines, Journal of Mathematical Modelling and Algorithms, 1, 89-104, 2002.
  • Huang M.-G., Chang P.-L., Chou Y.-C., Buffer allocation in flow-shop-type production systems with general arrival and service patterns, Computers & Operations Research, 29, 103-21, 2002.
  • Hillier F.S., On the optimal design of tandem queueing systems with finite buffers, Queueing Systems, 21, 245-266, 1995.
  • Gershwin S.B., Schor J.E., Effcient algorithms for buffer space allocation, Annals of Operations Research, 93, 117-144, 2000.
  • Shi C., Gershwin S.B., An effcient buffer design algorithm for production line profit maximization, Int. J. Production Economics, 122, 725-740, 2009.
  • Vouros G.A., Papadopoulos H.T., Buffer allocation in unreliable production lines using a knowledge based system, Computers & Operations Research, 25, 12, 1055-1067, 1998.
  • Kıvanc Aksoy H., Gupta S.M., Near optimal buffer allocation in remanufacturing systems with Npolicy, Computers & Industrial Engineering, 2010, in press.
  • Diamantidis A.C., Papadopoulos C.T., A dynamic programming algorithm for the buffer allocation problem in homogeneous asymptotically reliable serial production lines, Mathematical Problems in Engineering, 3, 209-223, 2004.
  • Betts L.M., Brown J.R., Luss H., Minimax resource allocation problems with ordering constraints, Nav. Res. Logis., 41, 6, 719-738, 1994.
  • Dawande M., Kalagnanam J., Keskinocak P., Ravi R., Salman F.S., Approximation algorithms for the multiple knapsack problem with assignment restrictions, J. Comb. Optim., 4, 2, 171-186, 2000.
  • Grabowski J., Pempera J., Sequencing of jobs in some production system, European Journal of Operational Research, 125, 3, 535-550, 2000.
  • Ibaraki T., Katoh N., Resource Allocation Problems: Algorithmic Approaches, MIT Press, Cambridge, MA, 1988.
  • Kumar K.R., Loomba A.P.S., Hadjinicola G.C., Marketing-production coordination in channels of distribution, European Journal of Operational Research, 126, 1, 189-217, 2000.
  • Qu C., Wang P., Optimization in production quota problem with convex cost function, Applied Mathematics and Computation, 177, 652-658, 2006.
  • Helber S., Schimmelpfeng K., Stolletz R., Lagershausen S., Using linear programming to analyze and optimize stochastic flow lines, Annals of Operations Research, 1-19, 2010.
  • Chen C., Chen K.H., Wu J.J., Chen C.W., A study of the flexible job shop scheduling problemwith parallel machines and reentrant process, Int. J. Adv. Manuf. Technol., 39, 344-354, 2008.
  • Bai S.X., Gershwin S.B., Scheduling manufacturing systems with work-in-process inventory control: reentrant systems, OR Spektrum, 18, 187-195, 1996.
  • Choi J.-Y., Ko S.-S., Simulation-based two-phase genetic algorithm for the capacitated re-entrant line scheduling problem, Computers & Industrial Engineering, 57, 660-666, 2009.
  • Scott L.R., Harmonosky C.M., An improved simulated annealing simulation optimization method for discrete parameter stochastic systems, Computers & Operations Research, 32, 343-358, 2005.
  • Alkhamis T.M., Ahmed M.A., Simulation-based optimization using simulated annealing with confi-dence interval, R.G. Ingalls et al. (Eds.), Winter Simulation Conference, 514-519, 2004.
  • Kirkpatrick S., Gelatt Jr C.D., Vecchi M.P., Optimization by simulated annealing, Science, 220, 671-80, 1983.
  • Miettinen K., Mäkelä M.M., Maaranen H., Effcient hybrid methods for global continuous optimization based on simulated annealing, Computers & Operations Research, 33, 1102-1116, 2006.
  • Bianchi L., Dorigo M., Gambardella L.M., Gutjahr W.J., A survey on metaheuristics for stochastic combinatorial, Optimization Nat. Comput., 8, 239-287, 2009.
  • Bulgak A., Sanders J., Integrating a modi6ed simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems, Haigh P., Comfort J., Abrams M., [Eds.], Proceedings of the 1988 Winter Simulation Conference. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 684-90, 1988.
  • Haddock J., Mittenthal J., Simulation optimization using simulated annealing, Computers and Industrial Engineering, 22, 387-95 1992.
  • Alrefaei M., Andradóttir S., A simulated annealing algorithm with constant temperature for discrete stochastic optimization, Management Science, 45, 748-764, 1999.
  • Andradottir S., A Method for Discrete Stochastic Optimization. Management Science, 41, 12, 1946-1961, 1995.
  • Andradottir S., Global Search for Discrete Stochastic Optimization, SIAM J. Optimization, 6, 2, 513-530, 1996.
  • Roenko N., Simulated Annealing under Uncertainty, Technical Report, Inst. F. Operations Research, Univ. Zurich, 1990.
  • Ghiani G., Legato P., Musmanno R., Vocaturo F., A combined procedure for discrete simulation-optimization problems based on the simulated annealing framework, Computational Optimization and Applications, 38, 133-145, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171571342

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.