PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | z. 76, nr 1 | 43--50
Tytuł artykułu

Analysis of Selected Toxic Metals using Bacterial Biosensors and their Macromolecular Derivatives

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This short review presents a number of bacterial transcription mechanisms dependant on metal occurrence in growth environment. Metallic ions such as mercury, cadmium or zinc evoke genetic response, which then can be engineered and utilized to reprogram cells. Recombinant biosensors could be applied in detection and quantification of trace amounts of toxic metals. The article presents a few examples of such use and also touches upon other related approaches where sensitivity to metals was a backbone for an idea to measure metal concentrations. (original abstract)
Rocznik
Numer
Strony
43--50
Opis fizyczny
Twórcy
  • Lodz University of Technology, Poland
Bibliografia
  • Studholme DJ, Dixon R. Domain architectures of sigma54-dependent transcriptional activators. J. Bacteriol. 2003, 185:1757-1767.
  • Jishage M, Iwata A, Ueda S, Ishihama A. Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J. Bacteriol. 1996, 178:5447-5451.
  • He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19:125-140.
  • Feng XD, Dang Z, Huang WL, Yang C. Chemical speciation of fine particle bound trace metals. Int. J. Environ. Sci. Tech. 2009, 6:337-346.
  • Juszczak L. Chemiczne zanieczyszczenia żywności i metody ich oznaczania - cz. I. Laboratorium, 2008, 3:38-42.
  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 2003, 27:145-163.
  • Nascimento AM, Chartone-Souza E. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2003, 2: 92-101.
  • Eitinger T, Mandrand-Berthelot MA, Nickel transport systems in microorganisms. Arch. Microbiol. 2000, 173:1-9.
  • Wang SC, Li Y, Ho M, Bernal ME, Sydor AM, Kagzi WR, Zamble DB. The response of Escherichia coli NikR to nickel: a second nickel-binding site. Biochemistry. 2010, 49:6635-6645.
  • Navarro C, Wu LF, Mandrand-Berthelot MA. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol. Microbiol. 1993, 9:1181-1191.
  • Leonhartsberger S, Huber A, Lottspeich F, Böck A. The hydH/G Genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol. 2001, 307:93-105.
  • Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem. 2005, 280:1448-1456.
  • Appia-Ayme C, Hall A, Patrick E, Rajadurai S, Clarke TA, Rowley G. ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive twocomponent regulator ZraSR. Biochem. J. 2012, 442:85-93.
  • Yamamoto K, Ishihama A. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 2005, 56:215-227.
  • Outten FW, Huffman DL, Hale JA, O'Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 2001, 276:30670-30677.
  • Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the coppertransporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 2003, 185: 3804-3812.
  • Turdean GL. Design and Development of Biosensors for the Detection of Heavy Metal Toxicity. Int. J. Electrochem. 2011, Article ID 343125, 15 pages.
  • Edward Raja E, Selvam GS. Construction of green fluorescent protein based bacterial biosensor for heavy metal remediation. Int. J. Environ. Sci. Tech. 2011, 8:793-798.
  • Liao VH, Ou KL. Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ. Toxicol. Chem. 2005, 24:1624-1631.
  • Schottel JL, Orwin PM, Anderson CR, Flickinger MC. Spatial expression of a mercury-inducible green fluorescent protein within a nanoporous latex-based biosensor coating. J. Ind. Microbiol. Biotechnol. 2008, 35:283-290.
  • Bourdineaud JP, Bellance N, Bénard G, Brèthes D, Fujimura M, Gonzalez P, Marighetto A, Maury-Brachet R, Mormède C, Pédron V, Philippin JN, Rossignol R, Rostène W, Sawada M, Laclau M. Feeding mice with diets containing mercurycontaminated fish flesh from French Guiana: a model for the mercurial intoxication of the Wayana Amerindians. Environ. Health. 2008, 7:53.
  • du Bray EA. Preliminary compilation of descriptive geoenvironmental mineral deposit models. 1995.
  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 2010, 10:268-292.
  • Peakall D, Burger J. Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol. Environ. Saf. 2003, 56:110-121.
  • Schaefer JK, Morel FMM. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geosci. 2009, 2:123-126.
  • Liu J, Shi JZ, Yu LM, Goyer RA, Waalkes MP. Mercury in Traditional Medicines: Is Cinnabar Toxicologically Similar to Common Mercurials? Exp. Biol. Med. 2008, 233:810-817.
  • Prachayasittikul V, Isarankura Na Ayudhya C, Bulow L. Lighting E. coli cells as biological sensors for Cd2+. Biotechnol. Lett. 2001, 23:1285-1291.
  • Wang A, Crowley DE, Global gene expression responses to cadmium toxicity in Escherichia coli. J. Bacteriol. 2005, 187:3259-3266.
  • Chapleau RR, Blomberg R, Ford PC, Sagermann M. Design of a highly specific and noninvasive biosensor suitable for real-time in vivo imaging of mercury (II) uptake. Protein Sci. 2008, 17:614-622.
  • Dawson JJ, Campbell CD, Towers W, Cameron CM, Paton GI. Linking biosensor responses to Cd, Cu and Zn partitioning in soils. Environ. Pollut. 2006, 142:493-500.
  • Riether KB, Dollard MA, Billard P, Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl. Microbiol. Biotechnol. 2001, 57:712-716.
  • Liao VH, Chien MT, Tseng YY, Ou KL. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ. Pollut. 2006, 142:17-23.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171575388

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.