PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | z. 78, nr 1 | 53--69
Tytuł artykułu

ZnS Cu-Doped Quantum Dots

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a survey of literature on the structure and optical properties of ZnS and copper ion-doped ZnS quantum dots. The effect of other metal dopants on the spectral properties of ZnS:Cu quantum dots was also considered. The influence of such parameters as dopant concentration, temperature of the synthesis and compounds which form or modify the additional layer on dots on spectral properties of the quantum dots was described. Examples of application of ZnS:Cu quantum dots are also given. (original abstract)
Rocznik
Numer
Strony
53--69
Opis fizyczny
Twórcy
  • Lodz University of Technology, Poland
autor
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
Bibliografia
  • Wolfbeis OS. Materials for fluorescence-based optical chemical sensors. J Mat Chem 2005, 15:2657-2669.
  • Wencel D, Abel T, McDonagh C. Optical chemical pH sensors. Anal Chem 2014, 86:15-29.
  • Wang X, Wolfbeis OS, Meier RJ. Luminescent probes and sensors for temperature. Chem Soc Rev 2013, 43:7834-7869.
  • Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose sensors. Biosen Bioelectron 2005, 20:2555-2565.
  • Steiner MS, Duerkop A, Wolfbeis OS. Optical methods for sensing glucose. Chem Soc Rev 2011, 40:4805-4839.
  • Kołwzan B. Zastosowanie czujników biologicznych (biosensorów) do oceny jakości wody. Ochr Sr 2009, 4:3-14.
  • Urek ŠK, Francic N, Turel M, Lobnik A. Sensing heavy metals using mesoporous-based optical chemical sensors. J Nanomater 2013, 1-13.
  • Askim JR, Mahmoudi M, Suslick KS. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 2013, 42:8649-8682.
  • Borisov SM, Wolfbeis OS. Optical Biosensors. Chem Rev 2008, 108:423-461.
  • Terry LA, White SF, Tigwell LJ. The application of biosensors to fresh produce and the wider food industry. J Agr Food Chem 2005, 53:1309-1316.
  • Burikov SA, Vervald AM, Vlasov II, Dolenko SA, Laptinskiy KA, Dolenko TA. Use of neural network algorithms for elaboration of fluorescent biosensors on the base of nanoparticles. P Soc Photo-Opt Ins 2013, 22:156-165.
  • Behbahaninia M, Martirosyan NL, Georges J, Udovich JA, Kalani YMS, Feuerstein BG, Nakaji P, Spetzler RF, Preul MC. Intraoperative fluorescent imaging of intracranial tumors: A review. Clin Neurol Neurosur 2013, 115:517-528.
  • Kim CS, Tonga GY, Solfiell D, Rotello VM. Inorganic nanosystems for therapeutic delivery: Status and prospects. Adv Drug Deliver Rev 2013, 65:93-99.
  • Hildebrandt N, Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 2011, 7:5286-5290.
  • Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications and toxicity. Nanoscale Res Lett 2012, 7:1-14.
  • Azzazy HME, Mansour MMH, Kazmierczak SC. From diagnostics to therapy: Prospects of quantum dots. Clin Biochem 2007, 40:917-927.
  • Meulenberg RW, van Buuren T, Hanif KM, Willey TM, Strouse GF, Terminello LJ. Structure and composition of Cu-doped CdSe nanocrystals using soft X-ray absorption spectroscopy. Nano Lett 2004, 11:2277-2285.
  • Kumar P, Singh K. Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots. J Nanopart Res 2011, 13:1613-1620.
  • Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D. ZnS nanostructures: from synthesis to applications. Prog Mater Sci 2011, 56:175-287.
  • Ahmad F, Pandey AK, Herzog AB, Rose JB, Gerba CP, Hashsham SA. Environmental applications and potential health implications of quantum dots. J Nanopart Res 2012, 14:1-24.
  • Kaniyankandy S, Rawalekar S, Verma S, Palit DK, Ghosh HN. Charge carrier dynamics in thiol capped CdTe quantum dots. Phys Chem Chem Phys 2010, 12:4210-4216.
  • Amelia M, Lincheneau C, Silvi S, Credi A. Electrochemical properties of CdSe and CdTe quantum dots. Chem Soc Rev 2012, 41:5728-5743.
  • Mahamuni S, Lad AD, Patole S. Photoluminescence properties of manganese-doped zinc selenide quantum dots. J Phys Chem C 2008, 112:2271-2277.
  • de Mello Donega C. Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 2011, 40:1512-1546.
  • Carrillo-Carrión C, Cardenas S, Simonet BM, Valcarcel M. Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem Commun 2009, 5214-5226.
  • Ehrlich H, Shcherba T, Zhilenko M, Lisichkin G. Peculiarities of formation and luminescence of ZnS nanoparticles modified with amino acids. Mater Lett 2011, 65:107-109.
  • Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 2002, 106:7177-7185.
  • Bol AA, Ferwerda J, Bergwerff JA, Meijerink A. Luminescence of nanocrystalline ZnS:Cu2+. J Lumin 2002, 99:325-334.
  • Ehrlich Kloust H, Schmidtke C, Merkl JP, Feld A, Schotten T, Fittschen UEA, Gehring M, Ostermann J, Pöselt E, Weller H. Poly(ethylene oxide) and polystyrene encapsulated quantum dots: highly fluorescent, functionalizable, and ultrastable in aqueous media. J Phys Chem C 2013, 117:23244-23250.
  • Ku MJ, Dossin FM, Choi Y, Moraes CB, Ryu J, Song R, Freitas-Junior LH. Quantum dots: a new tool for anti-malarial drug assays. Malaria J 2011, 10:1-5
  • Su XL, Li Y. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 2011, 76:4806-4810.
  • Koneswaran M, Narayanaswamy R. L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuat B: Chem 2009, 139:104-109.
  • Anikin KV, Melnik NN, Simakin AV, Shafeev GA, Voronov VV, Vitukhnovsky AG. Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem Phys Lett 2002, 366:357-360.
  • Frąckowiak D, Staśkowiak E, Łukasiewicz J. Kropki kwantowe w biotechnologii i medycynie. Postępy fizyki 2005, 1:12-19.
  • Booth M, Brown AP, Evans SD, Critchley K. Determining the concentration of CuInS2 quantum dots from the size-dependent molar extinction coefficient. Chem Mater 2012, 24:2064-2070.
  • Dong B, Cao L, Su G, Liu W, Qu H, Jiang D. Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions. J Colloid Interf Sci 2009, 339:78-82.
  • Jin Z, Hildebrandt N. Semiconductor quantum dots for in vitro diagnostics and cellular imagining. Trends Biotechnol 2012, 7:394-403.
  • Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Zhang X, Tai R, Fan Ch. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33:1238-1244.
  • Mandal P, Talwar SS, Major SS, Srinivasa RS. Orange-red luminescence from Cu doped CdS nanophosphor prepared using mixed Langmuir-Blodgett multilayers. J Chem Phys 2008, 128:1-7.
  • Singh SB, Limaye MV, Date SK, Kulkarni SK. Room temperature ferromagnetism in thiol-capped CdSe and CdSe:Cu nanoparticles. Chem Phys Lett 2008, 464:208-210.
  • Bottrill M, Green M. Some aspects of quantum dot toxicity. Chem Commun 2011, 47:7039-7050.
  • Bindu KR, Martinez AI, Vasudevan P, Unnikrishnan NV, Anila EI. Nanostructured ZnS powders with strong confinement effects prepared by colloidal precipitation method. Physica E 2012, 46:21-24.
  • Jothi NSN, Joshi AG, Vijay RJ, Muthuvinayagam A, Sagayaraj P. Investigation on one-pot hydrothermal synthesis, structural and optical properties of ZnS quantum dots. Mater Chem Phys 2013, 138:186-191.
  • Zhang R, Liu Y, Sun S. Facile synthesis of water-soluble ZnS quantum dots with strong luminescent emission and biocompatibility. Appl Surf Sci 2013, 282:960-964.
  • Li Z, Wang J, Xu X, Ye X. The evolution of optical properties during hydrothermal coarsening of ZnS nanoparticles. Mater Lett 2008, 62:3862-3864.
  • Li H, Shih WY, Shih WH. Highly photoluminescence and stable aqueous ZnS quantum dots. Ind Eng Chem Res 2010, 49:578-582.
  • Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V. Low temperature method for synthesis of ZnS quantum dots and its luminescence characterization studies. Appl Surf Sci 2013, 264:17-20.
  • Xiao Q, Xiao C. Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots. Appl Surf Sci 2008, 254:6432-6435.
  • Sarkar R, Tiwary C, Kumbhakar P, Basu S, Mitra A. Yellow-orange light emission from Mn2+- doped ZnS nanoparticles. Physica E 2008, 40:3115-3120.
  • Liu L, Yang L, Pu Y, Xiao D, Zhu J. Optical properties of water-soluble Co2+:ZnS semiconductor nanocrystals synthesized by a hydrothermal process. Mater Lett 2012, 66:121-124.
  • Khani O, Rajabi HR, Yousefi MH, Khosravi AA, Jannesari M, Shamsipur M. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)FexS quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin. Spectrochim Acta A 2011, 79:361-369.
  • Begum R, Sahoo AK, Ghosh SS, Chattopadhyay A. Recovering hidden quanta of Cu2+-doped ZnS quantum dots in reductive environment. Nanoscale 2014, 6:953-961.
  • Jayanthi K, Chawla S, Chander H, Haranath D. Structural, optical and photoluminescence properties of ZnS:Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Cryst Res Technol 2007, 10:976-982.
  • Zhang H, Wang Z, Zhang L, Li Y, Yuan J. Chemical synthesis and characterization of Cu doped ZnS nano-powder. J Mater Sci Lett 2002, 21:1031-1033.
  • Peng WQ, Cong GW, Qu SC, Wang ZG. Synthesis and photoluminescence of ZnS:Cu nanoparticles. Opt Mater 2006, 29:313-317.
  • Kole AK, Kumbhakar P, Chatterjee U. Observation of nonlinear absorption and visible photoluminescence emission in chemically synthesized Cu2+ doped ZnS nanoparticles. Appl Phys Lett 2012, 100:1-3.
  • Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M, Kulkarni SK. Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett 1995, 18:2701-2704.
  • Wang M, Sun L, Fu X, Liao Ch, Yan Ch. Synthesis and optical properties of ZnS:Cu(II) nanoparticles. Solid State Commun 2000, 115:493-496.
  • Nath SS, Chakdar D, Gope G, Kakati J, Kalita B, Talukdar A, Avasthi DK. Green luminescence of ZnS and ZnS:Cu quantum dots embedded in zeolite matrix. J Appl Phys 2009, 105:1-4.
  • Sun L, Liu Ch, Liao Ch, Yan Ch. Optical properties of ZnS:Cu colloid prepared with sulfurous ligands. Solid State Commun 1999, 111:483-488.
  • Bodo B, Kalita PK. Structural and optical properties of ZnS:Cu transparent nanosheets. Research Journal of Physical Sciences 2013, 1:2-5.
  • Labiadh H, Chaabane TB, Balan L, Becheik N, Corbel S, Medjahdi G, Schneider R. Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity. Appl Catal B: Environ 2014, 144:29-35.
  • Ziółczyk P, Przybyt M, Miller E. Properties of ZnS:Cu quantum dots. PhD Interdisciplinary Journal 2013, 2:113-118.
  • Wei M, Cao J, Fu H, Yang J, Yan Y, Yang L, Wang D, Han D, Fan L, Wang B. The structure and room temperature ferromagnetism property of the ZnS:Cu2+ nanoparticles. Mat Sci Semicon Proc 2013, 16:928-932.
  • Lee S, Song D, Kim D, Lee J, Kim S, Park IY, Choi YD. Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater Lett 2004, 58:342-346.
  • Manzoor K, Vadera SR, Kumar N, Kutty TRN. Synthesis and photoluminescent properties of ZnS. Mater Chem Phys 2003, 82:718-725.
  • Yang P, Song Ch, Lu M, Zhou GJ, Yang Z, Xu D, Yuan D. Photoluminescence of Cu+ - doped and Cu2+ - doped nanocrystalittes. J Phys Chem Solids 2002, 63:639-643.
  • Ummartyotin S, Bunnak N, Juntaro J, Sain M, Manuspiya H. Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci 2012, 14:299-304.
  • Corrado C, Cooper JK, Hawker M, Hensel J, Livingston G, Gul S, Vollbrecht B, Bridges F, Zhang JZ. Synthesis and characterization of organically soluble Cu-doped ZnS nanocrystals with Br co-activator. J Phys Chem C 2011, 115:14559-14570.
  • Begum R, Chattopadhyay A. Redox-tuned three-color emission in double (Mn and Cu) doped zinc sulfide quantum dots. J Phys Chem Lett 2014, 5:126-130.
  • Corrado C, Jiang Y, Oba F, Kozina M, Bridges F, Zhang JZ. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals. J Phys Chem A 2009, 113:3830-3839.
  • Huang J, Yang Y, Xue S, Yang B, Liu S, Shen J. Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks. Appl Phys Lett 1997, 18:2334-2337.
  • Hou S, Zhang X, Mao H, Wang J, Zhu Z, Jing W. Photoluminescence and XPS investigation of Cu2+- doped ZnS quantum dots capped with polyvinylpyrrolidone. Phys Status Solidi B 2009, 10:2333-2336.
  • Ehlert O, Osvet A, Batentschu M, Winnacker A, Nann T. Synthesis and spectroscopic investigations of Cu- and Pb-doped colloidal ZnS nanocrystals. J Phys Chem B 2006, 110:23175-23178.
  • Yang P, Lu M, Xu D, Yuan D, Zhou G. Photoluminescence properies of ZnS nanoparticles co-doped with Pb2+ and Cu2+. Chem Phys Lett 2001, 336:76-80.
  • Yang P, Lu M, Zhou G, Yuan D, Xu D. Photoluminescence characteristics of ZnS nanocrystalittes co-doped with Co2+ and Cu2+. Inorg Chem Commun 2001, 4:734-737.
  • Iqbal MJ, Iftekhar M. Effect on photophysical properies of colloidal ZnS quantum dots by doping with cobalt, copper, and cobalt-copper. J Nanopart Res 2011, 2139-2145.
  • Yang P, Lu M, Song Ch, Xu D, Yuan D, Cheng X, Zhou G. Luminescence of Cu2+ and In3+ co-activated ZnS nanoparticles. Opt Mater 2002, 20:141-145.
  • Pouretedal HR, Norozi A, Keshvarz MH, Semnani A. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as photocatalyst in the degradation of organic dyes. J Hazard Mater 2009, 162:674-681.
  • Small AC, Johnston JH, Clark N. Inkjet printing of water "soluble" doped ZnS quantum dots. Eur J Inorg Chem 2010, 242-247.
  • Moret S, Bécue A, Champod C. Cadmium-free quantum dots in aqueous solution: potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic Sci Int 2013, 224:101-110.
  • Geszke-Moritz M, Clavier G, Lulek J, Schneider R. Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin 2012, 132:987-991.
  • Ziółczyk P, Kur-Kowalska K, Przybyt M, Miller E. Quantum dots as a possible oxygen sensor. Spectrochim Acta A 2014, 126:28-35.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171575598

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.