PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | z. 78, nr 1 | 71--88
Tytuł artykułu

Lactate Biosensors for Food Industry

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lactic acid and lactate fermentation play important role in food and beverages production, control and quality. Analysis of lactate by standard methods is time, work consuming, and cannot be implemented at the production site. The alternative is the use of biosensors for lactate. The article reviews the biosensors for D- and L-lactic assay, their types, construction and application in food analysis area. The special emphasis is given to the commercial biosensor for lactate. The market survey indicates that there is a lack of lactate biosensors addressed to food industry except wine production. QUALI_JUICE project was the practical attempt to use some of the commercial biosensors in production and quality control in fruit juice industry. The results of the project indicates that commercial biosensors can be used after some minor functional adaptation in fruit juice production control. The application of these biosensors can be broadened to the other sectors of food and beverage industry. (original abstract)
Rocznik
Numer
Strony
71--88
Opis fizyczny
Twórcy
  • Lodz University of Technology, Poland
Bibliografia
  • Tsai SP, Coleman RD, Moon SH, Schneider KA, Millard CS. Strain screening and development for industrial lactic acid fermentation. Applied Biochem Biotech 1993, 39-40:323-335.
  • Bergmeyer HU. Methods of Enzymatic Analysis. vol VI. Verlag Chemie, Weinheim, Germany, 1984, 588-592.
  • Caplice E, Fitzgerald GF. Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 1999, 50:131-149.
  • Liu S-Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol 2003, 83:115-131.
  • Ikediobi CO, Onyike E. Linamarase activity and detoxification of cassava (Manihot esculenta) during fermentation. Agric Biol Chem 1982, 46:1667-1669.
  • Oyewole OB. Lactic fermented foods in Africa and their benefits. Food Control 1997, 8:289-297.
  • Lee C-H. Lactic acid fermented foods and their benefits in Asia, Food Control 1997, 8:259-269.
  • Stiles ME. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 1996, 70:331-345.
  • Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J. Current applications and future trends of lactic acid bacteria and their bacteriocins for biopreservation of aquatic food products. Food Bioprocess Technol 2008, 1:43-63.
  • Feord J. Lactic acid bacteria in changing legislative environment. Antonie van Leeuwenhoek 2002, 82:353-360.
  • Greer GG, Dilts BD. Lactic acid inhibition of the growth of spoilage bacteria and cold tolerant pathogens on pork. Int J Food Microbiol 1995, 25:141-151.
  • Sakhare PZ, Sachindra NM, Yashoda KP, Narasimha Rao D. Efficacy of intermittent decontamination treatments during processing in reducing the microbial load on broiler chicken carcass. Food Control 1999, 10:189-194.
  • Shrestha S, Min Z. Effect of lactic acid pretreatment on the quality of fresh pork packed in modified atmosphere. J Food Eng 2006, 72:254-260.
  • Savard T, Beaulieu C, Gardner NJ, Champagne CP. Characterization of spoilage yeasts isolated from fermented vegetables and inhibition by lactic, acetic and propionic acids. Food Microbiol 2002, 19:363-373.
  • Son SM, Moon KD, Lee CY. Inhibitory effects of various antibrowning agents on apple slices. Food Chem 2001, 73:23-30.
  • Litchfield JH. Microbiological production of lactic acid. Adv Appl Microbiol 1996, 42:45-95.
  • Reddy G, Altaf MD, Naveena BJ, Venkateshwar M, Vijaj Kumar E. Amylolytic bacterial lactic acid fermentation - A review. Biotechnol Adv 2008, 26:22-34.
  • Wee YJ, Kim JN, Ryu HW. Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 2006, 44:163-172.
  • Nikolaus N, Strehlitz B. Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim Acta 2008, 160:15-55.
  • Skládal P, Mascini M, Salvadori C, Zannoni G. Detection of bacterial contamination in milk using L-lactate biosensor. Enzyme Microb Tech 1993, 15:508-512.
  • Trifirò A, Saccani G, Gherardi S, Vicini E, Spotti E, Previdi MP, Ndagijimana M, Cavalli S, Reschiotto C. Use of ion chromatography for monitoring microbial spoilage in the fruit juice industry. J Chromatogr A 1997, 770:243-252.
  • Code of practice for the evaluation of fruit and vegetable juices. Association of the Industries of Juice and Nectars from Fruits and Vegetables of the Europe Economics Community, Brussels (Belgium), 2001.
  • Sakamoto K, Konings WN. Beer spoilage bacteria and hop resistance. Int J Food Microbiol 2003, 89:105-124.
  • Smith SM, Eng RHK, Buccini F. Use of D-lactic acid measurements in the diagnosis of bacterial infections. J Infect Dis 1986, 154:658-664.
  • Nychas G-JE, Skandamis PN, Tassou CC, Koutsoumanis KP. Meat spoilage during distribution. Meat Science 2008, 79:77-89.
  • Mazzei F, Azzoni A, Cavalieri B, Botrè F, Botrè C. A multi-enzyme bioelectode for rapid determination of total lactate concentration in tomatoes, tomato juice and tomato paste. Food Chem 1996, 55:413-418.
  • Toxicological evaluation of some antimicrobials, antioxidants, emulsifiers, stabilizers, flour-treatment agents, acids and bases. WHO Food Add 67.29, 1967, 144.
  • Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. WHO Food Add Series 1974, 5:461-465.
  • Esti M, Volpe G, Micheli L, Delibato E, Compagnone D, Moscone D, Palleshi G. Electrochemical biosensors for monitoring malolactic fermentation in red wine using two stains of Oenococcus oeni. Anal Chim Acta 2004, 512:357-364.
  • Avramescu A, Noguer T, Avramescu M, Marty J-L. Screen-printed biosensors for the control of wine quality based on lactate and acetaldehyde determination. Anal Chim Acta 2002, 458:203-213.
  • Vodnar D, Socaciu C. Comparative analysis of lactic acid produced by apple substrate fermentation, using HPLC and Tectronic Senzytec biosensor. Bulletin UASVM Agriculture 2008, 65:444-449.
  • Wojtczak M, Antczak A, Przybyt M. Use of ionic chromatography in determining the contamination of apple juice by lactic acid. Food Addit Contam A 2010, 27:817-824.
  • Klampfl CW, Buchberger W, Haddad PR. Determination of organic acids in food samples by capillary zone electrophoresis. J Chromatogr A 2000, 881:357-364.
  • Kodama S, Yamamoto A, Matsunaga A, Soga T, Minoura K. Direct chiral resolution of lactic acid in food products by capillary electrophoresis. J Chromatogr A 2000, 875:371-377.
  • Bergmeyer HU. Methods of Enzymatic Analysis. vol VI. VCH Publishers Ltd., Cambridge, UK, 1988, 582-588.
  • Miertuš S, Kartlík J, Pizzariello A, Stred'anský M, Švitel J, Švorc J. Amperometric biosensors based on solid binding matrices applied in food quality monitoring. Biosens Bioelectron 1998, 13:911-923.
  • Herrero AM, Requena T, Reviejo AJ, Pingarrón JM. Determination of L-lactic acid in yoghurt by a bienzyme amperometric graphite-Teflon composite biosensor. Eur Food Res Technol 2004, 219:557-560.
  • Thévenot DR, Thòt K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification (Technical report). Pure Appl Chem 1999, 71:2333-2348.
  • Terry LA, White SF, Tigwell LJ. The application of biosensors to fresh products and the wider food industry. J Agric Food Chem 2005, 53:1309-1316.
  • Wiliams DL, Doig AR, Korosi A. Electrochemical-enzymatic analysis of blood glucose and lactate. Anal Chem 1970, 42:118-121.
  • Makovos EB, Liu CC. Measurements of lactate concentration using lactate oxidase and an electrochemical oxygen sensor. Biotechnol Bioeng 1985, 27:167-170.
  • Palleschi G, Volpe G, Compagnone D, La Notte E, Esti M. Bioelectrochemical determination of lactic and malic acids in wine. Talanta 1994, 41:917-923.
  • Palmisano F, Centonze D, Quinto M, Zambonin PG. A microdialysis fibre sampler for flow injection analysis: determination of L-lactate in biofluids by an electrochemically synthesised bilayer membrane based biosensors. Biosens Bioelectr 1996, 11:419-425.
  • Mascini M, Moscone D, Palleschi G, Pilloton R. In-line determination of metabolites and milk components with electrochemical biosensors, Anal Chim Acta 1988, 213:101-111.
  • Patel NG, Erlenkötter A, Cammann K, Chemnitius G-C. Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis. Sensor Actuat B-Chem 2000, 67:134-141.
  • Palmisano F, Quinto M, Rizzi R, Zambonin PG. Flow injection analysis of L-lactate in milk and yoghurt by on-line microdialysis and amperometric detection at a disposable biosensors. Analyst 2001, 126:866-870.
  • Palmisano F, Rizzi R, Centonze D, Zambonin PG. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens Bioelectr 2000, 15:531-539.
  • Iwuoha EI, Rock A, Smyth MR. Amperometric L-lactate biosensor : 1. Lactic acid sensing electrode containing lactate oxidase in a composite poly-L-lysine Matrix. Electroanal 1999, 11:367-373.
  • Garjonyte R, Yigzaw Y, Menkys R, Malinaukas A, Gorton L. Prussian blue- and lactate oxidase-based amperometric biosensor for lactic acid. Sensor Actuat B-Chem 2001, 79:33-38.
  • Sato N, Okuma H. Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme- modified bilayer electrodes. Anal Chim Acta 2006, 565:250-254.
  • Abel PU, von Voedtke T, Schulz B, Bergann T, Schwock A. Stability of immobilized enzymes as biosensors for continuous application in vitro and in vivo. J Mol Catal B-Enzym 1999, 7:93-100.
  • Parra A, Casero E, Vázquez L, Pariente F, Lorenzo E. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surface. Anal Chim Acta 2006, 555:308-315.
  • Zanini VP, de Mishima BL, Labbé P, Solís V. An L-lactate amperometric enzyme electrode based on L-lactate oxidase immobilized in a laponite gel on a glassy carbon electrode. Application to dairy products and red wine. Electroanal 2010, 22:946-954.
  • De Luca S, Florescu M, Ghica ME, Lupu A, Palleschi G, Brett CMA, Compagnone D. Carbon film electrodes for oxidase-based enzyme sensors in food analysis. Talanta 2005, 68:171-178.
  • Albareda-Sirvent M, Hart AL. Preliminary estimates of lactic and malic acid in wine using electrodes printed from inks containing sol-gel precursors. Sensor Actuat B-Chem 2002, 87:73-81.
  • Ohara TJ, Rajagopolan R, Heller A. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 1994, 66:2451-2457.
  • Marquette CA, Blum LJ. Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 1999, 381:1-10.
  • Blum LJ, Gautier SM, Berger A, Michel PE, Coulet PR. Multicomponent organised bioactive layers for fiber-optic luminescent sensors. Sensor Actuat B-Chem 1995, 29 :1-9.
  • Ballesta-Claver J, Valencia-Mirón MC, Capitán-Vallvey LF. One-shot lactate chemiluminescent biosensor. Anal Chim Acta 2008, 629:136-144.
  • Trettnak W, Wolfbeis OS. A fully reversible fiber optic lactate biosensor based on the intrinsic fluorescence of lactate monooxygenase. Fresen J Anal Chem 1989, 334:427-430.
  • Treu BL, Minteer SD. Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Bioelectrochem 2008, 74:73-77.
  • Garjonyte R, Melvydas V, Malinaukas A. Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with baker's yeast Saccharomyces cerevisiae. Bioelectrochem 2006, 68:191-196.
  • Adamowicz E, Burnstein C. L-lactate enzyme electrode obtained with immobilized respiratory chain from Escherichia coli and oxygen probe for specific determination of L-lactate in yoghurt, wine and blood. Biosensors 1987/1988, 3:27-43.
  • Kim HJ, Hyun MS, Chang IS, Kim BH. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microb Biotech 1999, 9:365-367.
  • Luong JHT, Mulchandani A, Groom CA. The development of an amperometric microbial biosensor using Acetobacter pasteurianus for lactic acid. J Biotech 1989, 10:241-252.
  • Wu F, Huang Y, Huang C. Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element. Biosens Bioelectron 2005, 21:518-522.
  • Silber A, Bräuchle C, Hampp N. Dehydrogenase-based thick-film biosensors for lactate and malate. Sensor Actuat B-Chem 1994, 18:235-239.
  • Rahman MM, Shiddiky MJA, Rahman MDA, Shim Y-B. A lactate biosensor based on lactate dehydrogenase/nicotinamide adenine dinucleotide (oxidized for) immobilized an a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 2009, 384:159-165.
  • Agüí L, Eguílaz M, Peña-Farfal C, Yáñez-Sedeño P, Pingarrón JM. Lactate dehydrogenase biosensors based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanal 2009, 21:386-391.
  • Li Ch-I, Lin Y-H, Shih Ch-L, Tsuar J-P, Chau L-K. Sol-gel encapsulation of lactate dehydrogenase for optical sensing of L-lactate. Biosens Bioelectron 2002, 17:323-330.
  • Li Y-S, Ju X, Gao X-F, Zhao Y-Y, Wu Y-F. Immobilization enzyme fluorescence capillary analysis for determination of lactic acid. Anal Chim Acta 2008, 610:249-256.
  • Avramescu A, Noguer T, Magerau V, Marty J-L. Chronoamperometric determination of D-lactate using screen-printed enzyme electrodes. Anal Chim Acta 2001, 433:81-88.
  • Avramescu A, Andreescu S, Noguer T, Bala C, Andreescu D, Marty J-L. Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Anal Bioanal Chem 2002, 374:25-32.
  • Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. A bienzyme-poly (-o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate. Anal Chim Acta 1997, 346:165-174.
  • Kartlík J, Pizzariello A, Mastihuba V, Švorc J, Stred'anský M, Miertuš S. Biosensors for L-malate and L-lactate based on solid binding matrix. Anal Chim Acta 1999, 379:193-200.
  • Gilis M, Comtat M. (1995) Contribution of biosensors to oenology and constrains associated with their use. Sensor Actuat B-Chem 1995, 27:417-420.
  • Montagné M, Marty JL. (1995) Bi-enzymatic amperometric D-lactate sensor using macromolecular NAD+. Anal Chim Acta 1995, 315:297-302.
  • Montagné M, Erdmann H, Comtat M, Marty JL. Comparison of the performance of two bi-enzymatic sensors for the detection of D-lactate. Sensor Actuat B-Chem 1995, 27:440-443.
  • Casimiri V, Burnstein C. Co-immobilized L-lactate oxidase and L-lactate dehydrogenase on oxygen electrode for highly sensitive L-lactate determination. Biosens Bioelectron 1996, 11:783-789.
  • Mizutani F, Shimura Y, Tsuda K. Catalytic assay of L-lactate or pyruvate with an enzyme electrode based on immobilized lactate oxidase and lactate dehydrogenase. Chem Lett 1984, 13:199-202.
  • Scheller F, Siegbahn N, Danielsson B, Mosbach K. High-sensitivity enzyme thermistor determination of L-lactate by substrate recycling. Anal Chem 1985, 57:1740-1743.
  • Mazzei F, Botrè F, Favero G. Peroxidase based biosensors for the selective determination of D,L-lactic acid and L-malic acid in wines. Microchem J 2007, 87:81-86.
  • Girotti S, Muratori M, Fini F, Ferri EN, Carrea G, Koran M, Rauch P. Luminescent enzymatic flow sensor for D- and L-lactate assay in beer. Eur Food Res Technol 2000, 210:216-219.
  • Pohanka M, Zbořil P. Amperometric biosensor for D-lactate assay, Food Technol Biotechnol 2008, 46:107-110
  • Shkotova LV, Goriushkina TB, Tran-Minh C, Chovelon J-M, Soldatkin AP, Dzyadevych SV. Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater Sci Eng C-Biomim 2008, 28:943-948.
  • Prieto-Simón B, Fàbregas E, Hart A. Evaluation of different strategies for the development of amperometric biosensor for L-lactate. Biosens Bioelectron 2007, 22:2663-2668.
  • Collier WA, Lovejoy P, Hart AL. Estimation of soluble L-lactate in dairy products using screen-printed sensors in a flow injection analyzer. Biosens Bioelectron 1998, 13:219-225
  • Serra B, Reviejo AJ, Parrado C, Pingarrón JM. Graphite-teflon composite bienzyme electrodes for the determination of L-lactate: application to food samples. Biosens Bioelectron 1999, 14:505-513.
  • Mizutani F, Yabuki S, Hirata Y. Flow injection analysis of L-lactic acid using an enzyme-polyion complex-coated electrode as the detector. Talanta 1996, 43:1815-1820.
  • Rassei L, Olthuis W, Tsujimura S, Sudhölter EJR, van der Berg A, Lactate biosensors: current status and outlook. Anal Bioanal Chem 2014, 406:123-137
  • Nguyen-Boisse TT, Saulmier J, Jaffrezic-Renault N, Lagarde F. Highly sensitive conductometric biosensor for total lactate, D- and L-lactate determination in dairy products. Sensor Actuat B-Chem 2013, 179:232-239
  • Ghamouss F, Ledru S, Ruillé N, Lantier F, Boujtita M. Bulk-modified screen-printing carbon electrodes with both lactate oxidase (LOD) and horseradish peroxidase (HPR) for the determination of L-lactate in flow injection analysis mode. Anal Chim Acta 2006, 570:158-164.
  • Choi MMF. Application of a long shelf-life biosensor for the analysis of L-lactate in dairy products and serum samples. Food Chem 2005, 92:575-581.
  • Torriero AAJ, Salinas E, Battaglini F, Raba J. Milk lactate determination with a rotating bioreactor based on an electron transfer mediated by osmium complexes incorporating a continuous-flow/ stopped-flow system. Anal Chim Acta 2003, 498:155-163.
  • Monošík R, Streďanský M, Greif G, Štrudlík E. A rapid method for determination of L-lactic acid in real samples by amperometric biosensor utilizing nanocomposite, Food Control 2012, 23:238-244.
  • Hajizadec K, Halsall HB, Heineman WR. Immobilization of lactate oxidase in a poly(vinyl alcohol) matrix on platinized graphite electrodes by chemical cross-linking with isocyanate. Talanta 1991, 38:37-47.
  • Bardeletti G, Sechaud F, Coulet PR. A reliable L-lactate electrode with a new membrane for enzyme immobilization for amperometric assay of lactate. Anal Chim Acta 1986, 187:47-54.
  • Zaydan R, Dion M, Boujtita M. Development of a new method, based on a bioreactor coupled with an L-lactate biosensor, towards the determination of a nonspecific inhibition of L-lactic acid production during milk fermentation. J Agric Food Chem 2004, 52:8-14.
  • Esti M, Messia MC, La Notte E, Lembo P, Compagnone D, Palleschi G. Curd-ripening evaluation by flow injection analysis of L-lactic acid with an electrochemical biocell during mozzarella cheese manufacture. J Agric Food Chem 1996, 44:3102-3107.
  • Rinken T, Riik H. Determination of antibiotic residues and their interaction in milk with lactate biosensor. J Biochem Bioph Meth 2006, 66:13-21.
  • Goriushkina TB, Soldatkin AP, Dzyadevych SV. Application of amperometric biosensors for analysis of ethanol, glucose and lactate in wine. J Agric Food Chem 2009, 57:6528-6535.
  • Gamella M, Campuzano S, Conzuelo F, Curiel JA, Muñoz R, Reviejo AJ, Pingarrón JM. Integrated multienzyme electrochemical biosensor for monitoring malolactic fermentation in wines. Talanta 2010, 81:925-933.
  • Lowinsohn D, Bertotti M. A biosensor based on immobilization of lactate oxidase in a PB-CTAB film for FIA determination of lactate in beer samples. J Braz Chem Soc 2008, 19:637-642.
  • Korneyeva LCh, Borisova AV, Yashina YI, Karyakina EE, Voronin OG, Cosnier S, Karyakin AA. Electrochemical polymerization of N-substituted pyrrols for the development of novel lactate biosensor. Mosc Univ Chem Bull 2010, 65:49-55.
  • Hart AL, Matthews C, Collier WA. Estimation of lactate in meat extracts by screen-printed sensors. Anal Chim Acta 1999, 386:7-12.
  • Kim N, Haginoya R, Karube I. Characterisation and food application of an amperometric needle-type L-lactate sensor. J Food Sci 1996, 61:286-290.
  • Kwan RCH, Hon PYT, Mak KKW, Renneberg R Amperometric determination of lactate with novel trienzyme/poly(carbamoyl) sulfonate hydrogel-based sensor. Biosens Bioelectron 2004, 19:1745-1752.
  • Davis RS, Farr VC, Prosser CG, Nicholas GD, Turner S-A, Lee J, Hart AL. Milk L-lactate concentration is increased during mastitis. J Dairy Res 2004, 71:175-181.
  • Kriz K, Kraft L, Krook M, Kriz D. Amperometric determination of L-lactate based on entrapment of lactate oxidase on a transducer surface with a semi-permeable membrane using a SIRE technology based biosensor. Application: tomato paste and baby food. J Agric Food Chem 2002, 50:3419-3424.
  • Przybyt M, Biernasiak J. Zastosowanie biosensorów do oznaczania mleczanów w owocowych sokach komercyjnych i koncentratach. Application of biosensors to L-lactate assai in commercial juices and concentrates. Żywność Nauka Technologia Jakość 2008, 5:168-177.
  • Przybyt M, Iciek J, Papieska A, Biernasiak J. Application of biosensors in early detection of contamination with lactic acid bacteria during apple juice and concentrate production. J Food Eng 2010, 99:485-490.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171575600

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.