Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | z. 80, nr 2 | 97--108
Tytuł artykułu

The Role of Phenolic Compounds in Plant Resistance

Treść / Zawartość
Warianty tytułu
Języki publikacji
Phenolic compounds are plant secondary metabolites playing important roles in plant resistance. Their chemical structure is based on at least one aromatic ring bonded to one or more hydroxyl groups. They are mainly synthetized from amino acid phenylalanine which is converted to cinnamic acid. Phenolics are one of the largest and most diverse groups of plant active substances. These compounds take part in the regulation of seed germination and cooperate in regulating the growth of plants, also taking part in defence responses during infection, excessive sun exposure, injuries and heavy metal stress. One of the most important features of phenolic compounds is antioxidant activity which is closely related to their chemical structure. The aim of this review is to discuss the role of phenolic compounds in the interactions of plants with various stress factors, both biotic and abiotic with special attention to their antioxidant properties. (original abstract)
Opis fizyczny
  • Lodz University of Technology, Poland
  • Kozłowska M, Konieczny G. Biologia odporności roślin na patogeny i szkodniki. Wyd. Akademii Rolniczej im. A.Cieszkowskiego, Poznan, Poland, 2003
  • Krol P, Kepczynska E. Rola jasmonianów w indukowanej odporności systemicznej roślin przeciwko patogenom. Biotechnologia 2008, 80:122-135.
  • Dąbrowski S, Głowacki S, Macioszek VK, Kononowicz AK. Reaktywne formy tlenu w odpowiedzi obronnej roślin na grzyby nekrotroficzne. Postępy Biol Kom 2009, 36:163-176.
  • Bartosz G. Druga twarz tlenu. PWN, Warszawa, Poland, 2004.
  • Czajka A. Wolne rodniki tlenowe a mechanizmy obronne organizmu. Nowiny Lekarskie 2006, 75:582-586.
  • De Gara L, De Pinto MC, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem 2003, 41:863-870.
  • Wojtaszek P. Oxidative burst: an early plant response to pathogen infection. Biochem J 1997, 322:681-692.
  • Bolwell GP, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defence-a broad perspective. Physiol Mol Plant Pathol 1997, 51:347-366.
  • Bolwell GP. Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 1999, 2:287-294.
  • Auh CK, Murphy TM. Plasma membrane redox enzyme is involved in the synthesis of O2 - and H2O2 by Phytophthora elicitor-simulated rose cells. Plant Physiol 1995, 107:1241-1247.
  • Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:251-275.
  • Pietras T, Małolepsza U, Witusik A. Udział nadtlenku wodoru i reaktywnych postaci tlenu wytwarzanych przez oksydazę NADPH w odporności roślin przeciwko patogenom. Wiad Bot 1997, 41:43-50.
  • Kawahara T, Quinn MT, Lambeth JD. Molecular evolution of the reactive oxygengenerating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evolutionary Biology 2007, 7:109.
  • Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci 2012, 17:9-15.
  • Nowicka B, Kruk J. Reaktywne formy tlenu w roślinach - więcej niż trucizna. Kosmos 2013, 62:583-596.
  • Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot 2015, 109:212-228.
  • Puzanowska-Tarasiewicz H, Starczewska B, Kuźmicka L. Reaktywne formy tlenu. Bromat Chem Toksykol 2008, 41:1007-1015.
  • Kalisz O, Wolski T, Gerkowicz M, Smorawski M. Reaktywne formy tlenu (RTF) oraz ich rola w patogenezie niektórych chorób. Ann Uni M.Curie-Skłodowska 2007, 62:87-99.
  • Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 14:43-50.
  • Vance JE,Vance DE. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier, Amsterdam, The Netherlands, 2008: 97-154.
  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999, 424:83-95.
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 1968, 125:189-198.
  • Sroka Z, Gamian A, Cisowski W. Niskocząsteczkowe związki przeciwutleniające pochodzenia naturalnego. Postepy Hig Med Dosw 2005, 59:34-41.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 2010, 48:909-930.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J Botany 2012, Article ID 217037:1-26. doi:10.1155/2012/217037.
  • Gechev TS, van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 2006, 28:1091-1101.
  • Servajeet SG, Narendra T. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 2010, 48:909-930.
  • Michalak A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol J Environ Stud 2006, 15:523-530.
  • Kopcewicz J, Lewak S. Fizjologia roślin. PWN, Warszawa, Poland, 2004.
  • Knaggs AR. The biosynthesis of shikimate metabolites. Nat Prod Rep 2003, 20:119-136.
  • Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection". Mol Plant Pathol 2010, 11:705-719.
  • Reyes LF, Cisneros-Zevallos L. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J Agric Food Chem 2003, 51:5296-5300.
  • Posmyk MM, Kontek R, Janas KM. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotox Environ Saf 2009, 72:596-602.
  • Boudet AM. Lignins and lignification: Selected issues. Plant Physiol Bioch 2000, 38:81-96.
  • Horvath DM, Chua NH. The role of salicylic acid in systemic acquired resistance. Curr Opin Biotechnol 1994, 5:131-136.
  • Heil M. Systemic acquired resistance: available information and open ecological questions. J Ecol 1999, 87:341-346
  • Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol 2007, 59:1673-1685.
  • Bozin B, Mimica-Dukic N, Samojlik I, Goran A, Igic R. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem 2008, 111:925-929.
  • Lavid N, Schwartz A., Yarden O, Tel-Or E. The involvement of polyphenols and peroxidase acitivities in heavy metal accumulation by epidermal glands of waterlily (Nymphaeceaea). Planta 2001, 212:323-331.
  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 1997, 22:861-870.
  • Martens S, Preuss A, Matern U. Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 2010, 71:1040-1049.
  • Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012,
  • Ferrer JL, Austin MB, Stewart CJ, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 2008, 46:356-370.
  • Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends Plant Sci 1998, 3:212-217.
  • Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 2002, 5:218-223.
  • Liang B, Huang X, Zhang G, Zhang F, Zhou Q. Effect of lanthanum on plants under supplementary ultraviolet-B radiation: Effect of lanthanum on flavonoid contents in Soybean seedlings exposed to supplementary ultraviolet-B radiation. J Rare Earths 2006, 24:613-616.
  • Ryan KG, Swinny EE, Winefield C, Markham KR. Flavonoids and UV photoprotection in Arabidopsis mutants. Z Naturforsch C. 2001, 56:745-754.
  • Mira L1, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 2002, 36:1199-1208.
  • Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signaling molecules? Free Radic Biol Med 2004, 36:838-849.
  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 2001, 52:1339-1352.
  • Kostyuk VA1, Potapovich AI, Strigunova EN, Kostyuk TV, Afanas'ev IB. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys 2004, 428:204-208.
  • Kim MS, Kim C, Jo DH, and Ryu YW. Effect of fungal elicitor and heavy metals on the production of flavonol glycosides in cell cultures of Ginkgo biloba. J Microbiol Biotechnol 1999, 9:661-667.
  • Bota C, Deliu C. The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 2011, 59:113-118.
  • Lake BG. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem Toxicol 1999, 37:423-453.
  • Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A. Toxicology and risk assessment of coumarin: focus on human data. Mol Nutr Food Res 2010, 54:228-239.
  • Fotland TØ, Paulsen JE, Sanner T, Alexander J, Husøy T. Risk assessment of coumarin using the bench mark dose (BMD) approach: children in Norway which regularly eat oatmeal porridge with cinnamon may exceed the TDI for coumarin with several folds. Food Chem Toxicol 2012, 50:903-912.
  • Ashok PK, Upadhyaya K: Tannins are astringent. J Pharmacogn Phytochem 2012, 1:45-50.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.