PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | z. 81, nr 1 | 23--34
Tytuł artykułu

Extremophilic and Modified Aminotransferases as a Versatile Tool for the Synthesis of Optically Pure Building Blocks for Pharmaceutical Industry

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Considerable progress has been made in the past few years with industrial use of essential key intermediates for chemical and pharmaceutical industry. The increasing demand for obtaining chiral drugs in enantiomerically pure form makes it necessary to search for novel biocatalysts useful in the synthesis of amino acids, chiral amines, amino sugars and alcohols. According to the reaction mechanism, aminotransferases (ATs) have useful applications because of their capability of transfer of an amino group from a donor substrate to an acceptor, thus resulting in the synthesis of a wide variety of building blocks. This article reviews current biocatalytic approaches using microbial ATs in the synthesis of optically active products. Focus is also put on the engineering of ATs and their limitations in the industrial applications. Moreover this review covers biocatalytic approaches using ATs isolated from extreme environments. (original abstract)
Rocznik
Numer
Strony
23--34
Opis fizyczny
Twórcy
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
Bibliografia
  • Brooks WH, Guida WC, Daniel K. The significance of chirality in drug design and development. Curr Top Med Chem 2011, 11:760-70.
  • Hwang BY, Cho BK, Yun H, Koteshwar K, Kim BG. Revisit of aminotransferase in the genomic era and its application to biocatalysis. J. Mol. Catal. B: Enzymatic 2005, 37:47-55.
  • Cho BK, Seo JH, Kang TJ, Kim J, Park HY, Lee BS, Kim BG. Engineering aromatic L-amino acid transaminase for the asymmetric synthesis of constrained analogs of L-phenylalanine. Biotechnol Bioeng. 2006, 94:842-50.
  • Yun H, Lim S, Cho BK, Kim BG. ω-amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of β-amino acids and amines. Appl. Environ. Microbiol. 2004, 70:2529-2534.
  • Shin JS, Kim BG. Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants. Biotechnol Lett. 2009, 31:1595-1599.
  • Krasowski MD, Jenkins A, Flood P, Kung AY, Hopfinger AJ, Harrison NL. General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of γ-aminobutyric acid (GABA) current at the GABAA receptor but not with lipid solubility. J Pharmacol Exp Ther. 2001, 297:338-351.
  • Cho BK, Seo JH, Kim J, Lee CS, Kim BG. Asymmetric synthesis of unnatural L-amino acids using thermophilic aromatic L-amino acid transaminase. Biotechnol. Bioprocess Eng. 2006, 11:299-305.
  • Wu X, Fei M, Chen Y, Wang Z, Chen Y. Enzymatic synthesis of L-norephedrine by coupling recombinant pyruvate decarboxylase and ω-transaminase. Appl Microbiol Biotechnol. 2014, 98:7399-7408.
  • Chung YS, Kim DH, Seo WM, Lee HC, Liou K, Oh TJ, Sohng JK. Enzymatic synthesis of dTDP-4-amino-4,6-dideoxy-D-glucose using GerB (dTDP-4-keto-6-deoxy-D-glucose aminotransferase). Carbohydr Res. 2007, 342:1412-1418.
  • Koszelewski D, Tauber K, Faber K, Kroutil W. ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol. 2010, 28:324-332.
  • Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004, 73:383-415.
  • Percudani R, Peracchi A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics. 2009, 10:273.
  • Burnett G, Walsh C, Yonaha K, Toyama S, Soda K. Stereospecificity of enzymatic transamination of γ-aminobutyrate. J. Chem. Soc. Chem. Commun. 1979, 826-828.
  • Fuchs M, Koszelewski D, Tauber K, Kroutil W, Faber K. Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chem. Commun. 2010, 46:5500-5502.
  • Plosker GL, Figgitt DP. Repaglinide : a pharmacoeconomic review of its use in type 2 diabetes mellitus. Pharmacoeconomics. 2004, 22:389-411.
  • Chen C. Physicochemical, pharmacological and pharmacokinetic properties of the zwitterionic antihistamines cetirizine and levocetirizine. Curr Med Chem. 2008, 15:2173-2191.
  • Stinson SC. Chiral drugs: new single-isomer products on the chiral drug market create demand for enantiomeric intermediates and enantioselective technologies. Chem. Eng. News. 1994, 72:38-50.
  • Kempf DJ, Marsh KC, Kumar G, Rodrigues AD, Denissen JF, McDonald E, Kukulka MJ, Hsu A, Granneman GR, Baroldi PA, Sun E, Pizzuti D, Plattner JJ, Norbeck DW, Leonard JM. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother. 1997, 41:654-660.
  • Bujacz A, Rutkiewicz-Krotewicz M, Nowakowska-Sapota K, Turkiewicz M. Crystal structure and enzymatic properties of a broad substrate-specificity psychrophilic aminotransferase from the Antarctic soil bacterium Psychrobacter sp. B6. Acta Crystallogr D Biol Crystallogr. 2015, 71:632-645.
  • Krapcho J, Turk C, Cushman DW, Powell JR, DeForrest JM, Spitzmiller ER, Karanewsky DS, Duggan M, Rovnyak G, Schwartz J. Angiotensin-converting enzyme inhibitors. Mercaptan, carboxyalkyl dipeptide, and phosphinic acid inhibitors incorporating 4-substituted prolines. J Med Chem. 1988, 31:1148-1160.
  • Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 2010, 329:305-309.
  • Martin AR, DiSanto R, Plotnikov I, Kamat S, Shonnard D, Pannuri S. Improved activity and thermostability of (S)-aminotransferase by error-prone polymerase chain reaction for the production of a chiral amine. Biotech. Bioeng. 2007, 37:246-255.
  • Scarlato G. Aminotransferases for commercial. Spec. Chem. Mag. 2009, 56-57.
  • Cascaval D, Oniscu C. Galaction AI. Selective separation of amino acids by reactive extraction. Biochem Eng. 2001, 7:171-176.
  • Cho BK, Cho HJ, Park SH, Yun H, Kim BG. Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions. Biotechnol Bioeng. 2003, 81:783-789.
  • Yun H, Yang YH, Cho BK, Hwang BY, Kim BG. Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α-methylbenzylamine from racemic α-methylbenzylamine using ω-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction. Biotechnol. Lett. 2003, 25:809-814.
  • Shin JS, Kim BG. Kinetic resolution of α-methylbenzylamine with o-transaminase screened from soil microorganisms: application of a biphasic system to overcome product inhibition. Biotechnol Bioeng. 1997, 55:348-358.
  • Shin JS, Kim BG, Liese A, Wandrey C. Kinetic resolution of chiral amines with ω-transaminase using an enzyme-membrane reactor. Biotechnol. Bioeng. 2001, 73:179-187.
  • Yun H, Hwang BY, Lee JH, Kim BG. Use of enrichment culture for directed evolution of the Vibrio fluvialis js17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl Environ Microbiol. 2005, 71:4220-4224.
  • Hwang BY, Ko SH, Park HY, Seo JH, Lee BS, Kim BG. Identification of ω-aminotransferase from Caulobacter crescentus and site-directed mutagenesis to broaden substrate specificity. J Microbiol Biotechnol. 2008, 18:48-54.
  • Svedendahl M, Branneby C, Lindberg L, Berglund P, Reversed enantiopreference of an ω-transaminase by a single-point mutation. Chem. Cat. Chem. 2010, 2:976-980.
  • Onuffer JJ, Kirsch JF. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Protein Sci. 1995, 4:1750-1757.
  • Hwang BY, Kim BG. High-throughput screening method for the identification of active and enantioselective ω-transaminases. Enzyme Microb Technol. 2004, 34:429-436.
  • Han SW, Park ES, Dong JY, Shin JS. Mechanism-guided engineering of ω-transaminase to accelerate reductive amination of ketones. Adv. Synth. Catal. 2015, 357:1732-1740.
  • Sayer C, Bommer M, Isupov M, Ward J, Littlechild J. Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase from Sulfolobus solfataricus. Acta Crystallogr D Biol Crystallogr. 2012, 68:763-772.
  • Chen BH, Sayer A, Kaulmann U, Dalby PA, Ward JM, Woodley JM. Reaction modelling and simulation to assess the integrated use of transketolase and ω-transaminase for the synthesis of an aminotriol. Biocatal. Biotransformation 2006, 24:449-457.
  • Struvay C, Feller G. Optimization to low temperature activity in psychrophilic enzymes. Int. J. Mol. Sci. 2012, 13:11643-11665.
  • Cerioli L, Planchestainer M, Cassidy J, Tessaro D, Paradisi F. Characterization of a novel amine transaminase from Halomonas elongate. J. Mol. Catal. B: Enzym. 2015, 141-150.
  • Tanaka T, Yamamoto S, Taniguchi M, Hayashi H, Kuramitsu S, Kagamiyama H, Oi S. Further studies on aspartate aminotransferase of thermophilic methanogens by analysis of general properties, bound cofactors, and subunit structures. J Biochem. 1992, 112:811-815.
  • Graham DE, Huse HK. Methanogens with pseudomurein use diaminopimelate aminotransferase in lysine biosynthesis. FEBS Lett. 2008, 16:1369-1374.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171577900

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.