Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | z. 82, nr 1 | 15--27
Tytuł artykułu

Optical Properties of (3-(acetamidomethyl)phenyl)boronic acid and its Interactions with Selected Sugars

Treść / Zawartość
Warianty tytułu
Języki publikacji
3-(Acetamidomethyl)phenyl)boronic acid (3AAPBA)has at pH 7 absorbance maximum at 270 nm with molar absorbance coefficient 516 M-1cm-1. 3AAPBA exhibits weak fluorescence with maximum at 297 nm and quantum yield 0.062 ± 0.001. Fluorescence decay is monoexponentialand the lifetime is 2.05 ± 0.01 ns. Interactions of 3AAPBA with selected sugars were studied by absorbance, steady-state and time-resolved fluorescence measurements. At pH 7 fluorescence of 3AAPBA is quenched only by fructose (with quenching constant 67.9 M-1) and to some extend by galactose. Addition of these two monosaccharides causes also changes of absorbance spectra of 3AAPBA. Acid-base dissociation of free 3AAPBA and its esters with sugars was studied by absorbance and steady-state fluorescence measurements in pH range from 4.5 to 11.00. Esterification of phenylboronic acid derivatives by sugars leads to increased acidity of them. In case of 3AAPBA the obtained values of pK indicate that affinity of studied sugars towards it can be ordered as follows: fructose > galactose > glucose > maltose > lactose > sucrose. At pHs higher than pK the fluorescence decays turn to biexponential with additional shorter component in lifetime which we propose to attribute to anionic form of 3AAPBA or its esters. (original abstract)
Słowa kluczowe
Opis fizyczny
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
  • Hansen JS, Christensen JB, Petersen JF, Hoeg-Jensen T, Norrild JC. Arylboronic acids: A diabetic eye on glucose sensing. Sens. Actuat B 2012 161:45-79.
  • Wang HCh, Lee AR. Recent developments in blood glucose sensors. J Food Drug Anal 2015 23:191-200.
  • Sun X, James TD. Glucose sensing in supramolecular chemistry. Chem Rev 2015 115:8001-8037.
  • DiCesare N, Lakowicz JR. Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing group. Implication in the development of fluorescence probes for saccharides. J Phys Chem 2001 105:6834-6840.
  • Hosseinzadeh R, Mohadjeranib M, Pooryousefa M. Fluorene-based boronic acids as fluorescent. J Lumin 2015 30:549-555.
  • Zhang Y, He Z, Li G. A novel fluorescent vesicular sensor for saccharides based on boronic acid-diol interaction. Talanta 2010 81:591-596.
  • Sun XY, Liu B, Jiang YB. An extremely sensitive monoboronic acid based fluorescent sensor for glucose. Anal Chim Acta 2004 515:285-290.
  • DiCesare N, Adhikari D, Heynekamp J, Heagy M, Lakowicz JR. Spectroscopic and photophysical characterization of fluorescent chemosensors for monosaccharides based on N-phenylboronic acid derivatives of 1,8-Naphthalimide. J Fluoresc 2002 12:147-154.
  • Kur-Kowalska K, Przybyt M, Ziólczyk P, Sowiński P, Miller E. Fluorescence properties of 3-amino phenylboronic acid and its interaction with glucose and ZnS:Cu quantum dots. Spectrochim Acta A 2014 129:320-325.
  • Kur K, Przybyt M, Miller E. Study of 3-amino phenylboronic acid interactions with selected sugars by optical methods. J Lumin 2017 183:486-493.
  • DiCesare N, Lakowicz JR. Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing. Anal Biochem 2001 294:154-160.
  • Egawa Y, Miki R, Seki T. Colorimetric sugar sensing using boronic acid-substituted azobenzenes. Materials 2014 7:1201-1220.
  • Bosch L, Fyles T, James TD. Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron 2004 60:11175-11190.
  • Yan J, Springsteen G, Deeter S, Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acid and diols-it is not as simple as it appears. Tetrahedron 2004 60:11205-11209.
  • Gao X, Zhang Y, Wang B. New boronic acid fluorescent reporter compounds. A naphthalene-based on-off sensor functional at physiological pH. Org Lett 2003 5:4615-4618.
  • Soundaramani S, Badawi M, Kohlrust CM, Hageman JH. Boronic acids for affinity chromatography: spectral Methods for determination of ionization and diol-binding constants. Anal Biochem 1989 178:125-134.
  • Kur-Kowalska K, Przybyt M, Miller E. The study of phenylboronic acid optical properties towards creation of a glucose sensor. Biotechnol Food Sci 2014 78:101-110.
  • Parker CA, Rees WT. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 1960 85:587-600.
  • Chen RF. Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1967 1:35-42.
  • Ramsey BG. Electronic transitions in phenylboronic acids. I. Substituent and solvent effects. J Phys Chem 1970 74:2464-2469.
  • Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB. Selective sensing of saccharides using simple boronic acid and their aggregates. Chem Soc Rev 2013 42:8032-8048.
  • Tomsho JW, Pal A, Hall DG, Benkovic SJ. Ring structure and aromatic substituent effects on the pKa of the benzoxaborole pharmacophore. ACS Med Chem Lett 2011 3:48-52.
  • Scarmino I, Kubista M. Anlysis of correlated spectral data. Anal Chem 1993 65:409-416.
  • Kubista M, Sjöback R, Nygren J. Quantitative spectra analysis of multicomponent equilibria. Anal Chim Acta 1995 302:121-125.
  • Sjöback R, Gustafsson CM, Kubista M. Determination of DNA protein affinity constants using chemometric analysis of tryptophan fluorescence quenching data. J Lumin 1997 72-74:610-611.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.