Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | z. 82, nr 1 | 61--74
Tytuł artykułu

Application and Properties of Selected Flavanones

Treść / Zawartość
Warianty tytułu
Języki publikacji
Flavanones, secondary plant metabolites, are one of the main group of flavanoids. They are widely spread in nature in many plants. The large diversity of structural structure of flavanones and controlled methods of modifying their molecules have a huge impact on biological activity. The present review will summarize the current knowledge about occurrence, obtaining by chemical synthesis, application and bioactivity of flavanones. Also, they are received from specific chemical synthesis. Flavanones have a great biological activity. Derivatives of flavanone have many different properties such as anti-inflammatory, anticancer, antioxidant, antimicrobial or hepatoprotective activities. These natural polyphenolic compounds are used in cosmetology, pharmacy and medicine. The demand and usage on them increases. (original abstract)
Opis fizyczny
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
  • Parr AJ, Bolwell GP. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of Science, Food and Agriculture 2000, 80:985-1012.
  • Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem 2008, 56 (15): 6185-6205.
  • Choia DY, Leea YJ, Honga JT, Lee HJ. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease. Brain Research Bulletin 2012, 87:144-153.
  • Abhijit A. and Destache CJ. Natural polyphenols: potential in the prevention of sexually transmitted viral infections. Drug Discovery Today 2016, 21(2).
  • Friedman M. Antibacterial, antiviral and antifungal properties of wine and winery by products in relation to their flavonoid content. J Agric Food Chem, 62(18):324-334.
  • Abdallah M. Acta Histochemica 2017,
  • Yia J, Qua H, Wub Y, Wanga Z, Wanga L. Study on antitumor, antioxidant and immunoregulatory activities ofthe purified polyphenols from pinecone of Pinus koraiensis on tumor-bearing S180 mice in vivo. International Journal of Biological Macromolecules 2017, 94:735-744.
  • Singh JP, Kaur A, Singh N, Nim L, Shevkani K, Kaur H, Arora DS. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT - Food Science and Technology 2016, 65:1025-1030.
  • Lavecchia T, Rea G, Antonacci A, Giardi MT. Healthy and adverse effects of plantderived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix. Crit Rev Food Sci Nutr 2013, 53(2):198-213.
  • Krishnan G, Subramaniyan J, Subramani PC, Muralidharan B, Thiruvengadam D. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian Journal of Pharmaceutical Sciences 2017, 12:442-455.
  • Dinga HW, Huanga AL, Zhanga YL, Lia B, Huanga C, Maa TT, Menga XM, Lia J. Design, synthesis and biological evaluation of hesperetin derivatives as potent anti-inflammatory agent. Fitoterapia 2017, 121:212-222.
  • Copmans D, Orellana-Paucar AM, Steurs G, Zhang Y, Ny A, Foubert K, Exarchou V, Siekierskaa A, Kim Y, Borggraeve WD, Dehaen W, Pieters L, de Witte PAM. Methylated flavonoids as anti-seizure agents: Naringenin 4',7- dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochemistry International 2018, 112:124-133.
  • Fana R, Panb T, Zhuc AL, Zhang MH. Anti-inflammatory and anti-arthritic properties of naringenin via attenuation of NF-κB and activation of the heme oxygenase (HO)-1/related factor 2 pathway. Pharmacological Reports 2017, 69:1021-1029.
  • Khan MK, Huma ZE, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis 2014, 33:85-104.
  • Santi MD, Peralta MA, Mendoza CS, Cabrera JL, Ortega MG. Chemical and bioactivity of flavanones obtained from roots of Dalea pazensis Rusby. Bioorganic & Medicinal Chemistry Letters 2017, 27:1789-1794.
  • Li H, Hou Z, Li C, Zhang Y, Shen T, Hu Q, Ren D. Three pairs of diastereoisomeric flavanone glycosides from Viscum articulatum. Fitoterapia 2015, 102:156-162.
  • Lwashina T. The Structure and Distribution of the Flavonoids in Plants. J Plant Res 2000, 113: 287-299.
  • Pobłocka-Olech L, Marcinkowska K, Krauze-Baranowska M. Naryngenina i jej pochodne - flawananony o wielokierunkowej aktywności farmakologicznej. Borgis - Postępy Fitoterapii 2006,1:16-22.
  • Priscilla DH, Jayakumar M, Thirumurugan K. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. Journal Of Functional Foods 2015, 14:363-373.
  • Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability and epidemiology. Nutr. Res. 2004, 24:851.
  • Murti Y and Mishra P. Synthesis and Evaluation of Flavanones as Anticancer Agents. Indian Journal Of Pharmaceutical Sciences 2014, 76(2):163-166.
  • Acconcia F, Fiocchetti M, Marino M. Xenoestrogen regulation of ERa/ERb balance in hormone-associated cancers. Molecular and Cellular Endocrinology 2017, 457:3-12.
  • Rosa L, Pellegrini P, Totta M, Acconcia P, Marino F. Xenoestrogens alter estrogen receptor (ER) a intracellular levels. PLoS 2014, 9(2):88-96.
  • Bolli A, Bulzomi P, Galluzzo P, Acconcia F, Marino M. Bisphenol a impairs stradiolinduced protective effects against DLD-1 colon Cancer cell growth. IUBMB Life 2010, 62(9):684-687.
  • Chtourou Y, Fetoui H, Jemai R, Slima AB, Makni M, Gdoura R. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. European Journal of Pharmacology 2015,746:96-105.
  • Borradaile NM and others. Inhibition of hepatocyte apoB secretion by naringenin: Enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res 2002, 43:1544.
  • Al-Rejaie SS, Abuohashis HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J Gastroenterol 2013,19(34):5633-5644.
  • Hernández-Aquino E, Muriel P. Chapter 46: Naringenin and the Liver. Liver Pathophysiology 2017, 633-651.
  • Choudhury R, Chowrimootoo G, Srai K, Debnam E, Rice-Evans CA. Interactions of the flavonoid naringenin in the gastrointestinal tract and the influence of glycosylation. Biochem Biophys Res Commun 1999, 265:410-415.
  • Hammad HM and Shtaywy AH. Pharmacological effects of selected flavonoids on rat isolated ileum: Structure - activity relationship. Gen Pharmac 1997, 28:767.
  • Martin MJ, Motilva V, De la Lastra A. Quercetin and naringenin: effects on ulcer formation and gastric secretion in rats. Phytother Res 1993, 7:150.
  • Bae EA, Han MJ, Kim DH. In vitro anti-Helicobacter pylori activity of some flavonoids and their metabolites. Planta Med 1999, 65:442.
  • Islas MS, Naso LG, Lezama L, Valcarcel M, Salado C, Roura-Ferrer M, Ferrer EG, Williams PAM. Insights into the mechanisms underlying the antitumor activity of an oxidovanadium(IV) compound with the antioxidant naringenin. Albumin binding studies. Journal of Inorganic Biochemistry 2015, 149:12-24.
  • Lee JH. In-vitro evaluation fro antioxidant and anti-inflammatory property of flavanone derivatives. Food Bioscience 2015, 2:1-7.
  • Mira L and others. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic Res 2002, 36:1199.
  • Heo HJ and others. Effect of antioxidant flavanone, naringenin, from Citrus junos on neuroprotection. J Agric Food Chem 2004, 52:1520.
  • Bakhtiaria M, Panahib Y, Amelic J, Darvishid B. Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomedecine & Pharmacotherapy 2017, 93:218-229.
  • Kima HK, Jeongb TS, Leea MK, Parkc YB, Choi MS. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica Chimica Acta 2003, 327:129-137.
  • Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin - A mini-review. Life Sciences 2014, 113:1-6.
  • Salas MP, Reynoso CM, Céliz G, Daz M, Resnik SL. Efficacy of flavanones obtained from citrus residues to prevent patulin contamination. Food Research International 2012, 48:930-934.
  • Miler M, Živanović J, Ajdžanović V, Oreščanin-Dušić Z, Milenković D, Konić-Ristić A, Blagojević D, Milošević V, Šošić-Jurjević B. Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Experimental Gerontology 2016, 84:49-60.
  • Jung KY, Park J, Han YS, Lee YH, Shin SY, Lim Y. Synthesis and biological evaluation of hesperetin derivatives as agents inducing apoptosis. Bioorganic & Medicinal Chemistry 2017, 25:397-407.
  • Lazer LM, Sadhasivamc B, Palaniyandi K, Muthuswamy T, Ramachandranc I, Balakrishnand A, Pathak S, Narayanb S, Ramalingam S. Chitosan-based nanoformulation enhances the anticancer efficacy of hesperetin. International Journal of Biological Macromolecules 2017 (in press).
  • Boniface K, Guignouard E, Pedretti N, Garcia M, Delwail A, Bernard FX, Nau F, Guillet G, Dagregorio G, Yssel H, Lecron JC, Morel F. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol 2007, 150(3):407-15.
  • Patel NK, Bairwa K, Gangwal R, Jaiswal G, Jachak SM, Sangamwar AT, Bhutani KK. 2'-Hydroxy flavanone derivatives as an inhibitors of pro-inflammatory mediators: Experimental and molecular docking studies. Bioorganic & Medicinal Chemistry Letters 2015, 25:1952-1955.
  • Kallay F, Janzso G, Koczor I. The reactions of flavanone with substituted hydrazines. Tetrahedron 1967, 23:4317-4321.
  • Mistry B, Patel RV, Keum YS. Access to the substituted benzyl-1,2,3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arabian Journal of Chemistry 2015, 10:157-166.
  • Iwashina T, Kitajima J, Matsumoto S. Flavonoids in the species of Cyrtomium (Dryopteridaceae) and related genera. Biochemical Systematics and Ecology 2006, 34:14-24.
  • Shi L, Feng XE, Cui JR, Fang LH, Du GH, Li QS. Synthesis and biological activity of flavanone derivatives. Bioorganic & Medicinal Chemistry Letters 2010, 20:5466-5468.
  • Sarria ALF, Vilela AFL, Frugeri BM, Fernandes JB, Carlos RM, das Graças Fernandes da Silva MF, Cass QB, Cardoso CL. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays. Journal of Inorganic Biochemistry 2016, 164:141-149.
  • Gu H-S, Chen X, Zhang J-W, Zhang L, Li L. Synthesis and biological evaluation of novel flavanone derivatives as potential antipsychotic agents. Chemical Biology & Drug Design 2016, 89:353-364.
  • Zhang X, Khalidi O, Kim SY, Wang R, Schultz V, Cress BF, Gross RA, Koffas MAG, Linhardt RJ. Synthesis and biological evaluation of 5,7-dihydroxyflavanone derivatives as antimicrobial agents. Bioorganic & Medicinal Chemistry Letters 2016, 26:3089-3092.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.