Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The objective of this paper is to identify leading technologies in Industry 4.0. Design/methodology/approach: The identification was made with the use of text mining to explore the scientific texts in this field. Assumptions of own iterative method for analyzing scientific texts were proposed, with the use of R language, tokenization, lemmatization, n-grams and correspondence analysis. The assumptions of the proposed method were used to analyze the 40 most often quoted articles indexed in the Web of Science. Findings: On the basis of the obtained results, 4 leading technologies were identified. These are Cloud Computing, Internet of Things, Cyber-physical System and Big Data. Originality/value: The article proposes an original method of identifying the leading technologies used in Industry 4.0. The proposed method is based on text mining and correspondence analysis. (original abstract)
Rocznik
Strony
45--57
Opis fizyczny
Twórcy
autor
- Silesian University of Technology, Poland
Bibliografia
- 1. Bortolini, M., Ferrari, E., Gamberi, M., Pilati, F., and Faccio, M. (2017). Assembly system design in the Industry 4.0 era: a general framework. IFAC-PapersOnLine, 50(1), pp. 5700-5705.
- 2. Bradley, J., Loucks, J., Macaulay, J., Noronha, A., and Wade, M. (2015). Digital vortex: How digital disruption is redefining industries. Global Center for Digital Business Transformation: An IMD and Cisco initiative, p. 6-16. Available online https://www.cisco.com/c/dam/en/us/solutions/collateral/industry-solutions/digital-vortex- report.pdf, 29.10.2019.
- 3. Fan, W., Wallace, L., Rich, S., and Zhang, Z. (2006). Tapping the power of text mining. Communications of the ACM, 49(9), pp. 76-82.
- 4. Internet source: Apple Special Event. https://www.apple.com/apple-events/. Internet source: Google I/O '19 Recap https://events.google.com/io/recap/, 29.10.2019.
- 5. Future Manufacturing Technologies. https://www.fmtexpo.org/, Industries 4.0 http://www.industries4pointzero.com/conference/page/TC, Smart Industry Expo http://www.smartindustry-expo.com/, 29.10.2019.
- 6. Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., and Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0. International Journal of Production Research, 56(3), pp. 1118-1136.
- 7. Nakagawa, T., and Uchimoto, K. (2007, June). A hybrid approach to word segmentation and pos tagging. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp. 217-220.
- 8. Trappey, A.J., Trappey, C.V., Govindarajan, U.H., Chuang, A.C., and Sun, J.J. (2017). A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Advanced Engineering Informatics, 33, pp. 208-229.
- 9. Schumacher, A., Erol, S., and Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP 52, pp. 161-166. doi:10.1016/j.procir.2016.07.040.
- 10. Saturno M., Pertel V.M., Deschamps F., and Loures, E. (2017). Proposal of an automation solutions architecture for industry 4.0. Proceedings of the 24th International Conference on Production Research. Poznań: ICPR.
- 11. Silge, J., and Robinson, D. (2017). Text mining with R: A tidy approach. O'Reilly Media, Inc. Available online https://www.tidytextmining.com/index.html, 10.11.2019.
- 12. Vijayarani, S., Ilamathi, J., Nithya, and Phil, M. (2015). Preprocessing Techniques for Text Mining - An Overview. International Journal of Computer Science & Communication Networks, 5(1), pp. 7-16.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171590713